首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The consecutive steps of tumor growth, local invasion, intravasation, extravasation and invasion of anatomically distant sites are obligatorily perpetrated through specific interactions of the tumor cells with their microenvironment. Lumican, a class II small leucine-rich proteoglycans (SLRP) has been designated key roles both in extracellular matrix (ECM) organization and as an important modulator of biological functions. This review will critically discuss lumicans' roles in tumor development and progression. We will especially focus on correlating lumicans' expression and distribution in tumor tissues with: (1) the organization of the tumor matrices; (2) tumor cell signaling and functions; (3) tumor cell–matrix interface; (4) tumor angiogenesis; and (5) lumicans' potential roles in tumor-associated inflammatory response. Present knowledge of lumicans' biology provides a fundamental platform upon which to build and deepen our understanding of lumican function in tumorigenesis in order to be able to design credible anti-tumor approaches.  相似文献   

2.
3.
4.
MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels.  相似文献   

5.
6.
7.
The mitochondrial gateway to cell death is a frequent target for tumor suppressors, which largely utilize Bcl-2-dependent apoptotic pathways. Reporting in Science, Giorgi et al. (2010) now show that PML exerts its tumor suppressor function via a distinct mechanism: Ca2(+) transfer from the endoplasmic reticulum to the mitochondria.  相似文献   

8.
MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 μM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC(50) values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts.  相似文献   

9.
10.
11.
A precise balance between stimulators and inhibitors of angiogenesis, such as vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), respectively, is essential for angiogenic homeostasis in ocular tissues. Retinal hypoxia is accompanied by some pathological conditions that may promote intraocular neovascularization. Here we demonstrate that retinal glial (Müller) cells express and release pigment epithelium-derived factor (PEDF). Decreasing oxygen concentrations cause strong attenuation of PEDF release resulting in enhanced VEGF/PEDF ratios. Exposure of Müller cells to VEGF suppressed PEDF release in a dose-dependent manner. This may represent a novel mechanism of ocular angiogenic homeostasis sufficient in the control of PEDF levels during normoxia or mild hypoxia but supplemented by other (hitherto unknown) mechanisms in cases of strong hypoxia. In spite of the enhanced VEGF/PEDF ratios resulting from hypoxia, conditioned media of Müller cells failed to stimulate additional proliferation of retinal endothelial cells. These findings suggest that in the ischemic retina, Müller cells generate a permissive condition for angiogenesis by secreting more VEGF and less PEDF, but the onset of retinal endothelial cell proliferation requires another triggering signal that remains to be identified.  相似文献   

12.
Soil biota have been credited with helping to maintain native plant diversity in multiple systems. Recent evidence suggests that introduced species may be less responsive to soil communities than most native species. If response to soil communities is correlated with invasive ability, we predict that introduced pest species should be less responsive to soil communities than introduced non-pest species or natives. In this study we test whether response to soil biota from two diverse grassland communities differs between four introduced pest, six introduced non-pest, and five native species in grasses in Yolo County, California. We found no variation in plant size or response to soil biota between introduced pest and introduced non-pest species, and these were combined in subsequent analyses. Overall, all introduced species grew significantly faster than native species. Native species showed greater variation in response to soil communities than both groups of introduced species, and native species’ response varied with soil community. Variation among native species’ response to soil nutrients and biota through processes like soil feedbacks may be key to maintaining diversity across landscapes in uninvaded environments. Introduced species appear less responsive to landscape variability in soil communities, which may allow them to establish and dominate plant communities in multiple habitats.  相似文献   

13.
Highly metastatic ras/myc-transformed serum-free mouse embryo (r/m HM-SFME-1) cells were injected subcutaneously to mice and the effects of -nitro-l-arginine methyl ester (l-NAME) on the tumor progression and pulmonary metastasis were investigated. In addition, production of nitric oxide (NO), matrix metalloproteinases (MMPs) and tumor necrosis factor-alpha (TNF-α) in the tumor cells and in a mouse macrophage-like cell line, J774.1 cells, was analyzed. The increase in footpad thickness was significantly smaller in the mice which were fed the l-NAME containing water (4.24 ± 0.39 mg/day/mouse). The number of the tumor cells metastasized to the lungs was smaller in the l-NAME treated mice, although statistical significance was not found. Co-treatment of r/m HM-SFME-1 cells with interferon-gamma (IFN-γ; 100 U/ml) and lipopolysaccharide (LPS; 0.5 μg/ml) significantly enhanced NO production, and the presence of l-NAME at 1 mM significantly decreased this response. In r/m HM-SFME-1 cells, MMP-2 was undetectable and MMP-9 was also very little in the basal level, and both MMPs were unaffected by the IFN-γ and/or LPS treatments, not to mention by the l-NAME treatment. In J774.1 cells, any treatment including LPS appeared to enhance MMP-9 production, however, this upregulation was not inhibited by the additional presence of l-NAME. Production of TNF-α by J774.1 cells was markedly enhanced with LPS treatment, and this enhancement was significantly reduced in the presence of l-NAME. These results indicate that the inhibitory effects of l-NAME on the tumor cell progression and pulmonary metastasis could be due to suppression of NO from tumor cells and TNF-α from macrophages (Mol Cell Biochem, 2007). Hideaki Yamaguchi and Yumi Kidachi contributed equally to this work.  相似文献   

14.
Over the past few decades, extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication. EVs encapsulate and convey information to surrounding cells or distant cells, where they mediate cellular biological responses. Among their multifaceted roles in the modulation of biological responses, the involvement of EVs in vascular development, growth and maturation has been widely documented and their potential therapeutic application in regenerative medicine or in the treatment of angiogenesis-related diseases is drawing increasing interest. In this review, we have summarized the details about the current knowledge on biogenesis of EVs and conventional isolation methods. Evidence supporting the use of EVs derived from mesenchymal stromal cells (MSCs) to enhance angiogenesis in the development of insufficient angiogenesis, such as chronic wounds, stroke and myocardial infarction, will also be discussed critically. Finally, the main challenges and prerequisites for their therapeutic applications will be evaluated.  相似文献   

15.
16.
17.
18.
MicroRNAs plays an important role in the ccurrence and development of non–small-cell lung cancer (NSCLC). miR-497-5p has been reported to function as a tumor suppressor in various cancers. However, the role of miR-497-5p in NSCLC remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of miR-497-5p in NSCLC. Our results showed that the messenger RNA (mRNA) expression level of miR-497-5p was notably downregulated in human NSCLC tissues and cell lines. miR-497-5p overexpression remarkably inhibited NSCLC cell proliferation and increased cell apoptosis in A549 and H460 cells, whereas inhibition of miR-497-5p had an opposite effect. The ability of cell migration and invasion was inhibited by miR-497-5p overexpression but was increased by miR-497-5p inhibition. Moreover, our findings indicated that SOX5 was a direct target of miR-497-5p. The protein and mRNA expression levels of SOX5 in A549 cells were remarkably inhibited by miR-497-5p overexpression but was upregulated by miR-497-5p inhibition. Furthermore, SOX5 overexpression notably reversed the effect of miR-497-5p mimic on NSCLC cell proliferation, cell apoptosis, cell migration, and invasion. Taken together, these results indicated that miR-497-5p overexpression inhibited NSCLC cell proliferation, migration and invasion, and induced cell apoptosis through inhibiting SOX5 gene expression. It was conceivable that miR-497-5p might serve as a potential molecular target for NSCLC treatment.  相似文献   

19.
Increasing evidence implicates an important role for a variety of bone marrow derived cells (BMDCs) in tumor angiogenesis and metastatic tumor growth. These cells are derived either from the hematopoietic or mesenchymal cell lineage, and they are distinguished, in part, by the expression of the panhematopoietic marker ‐ CD45. Some of these cell populations can colonize tumors perivascularily, and appear to promote angiogenesis and tumor cell proliferation by paracraine mechanisms, whereas others can contribute “directly” to the growth of tumor vessel capillaries or metastases. In this review we focus in particular on the role of hemangiocytes or recruited bone marrow derived circulating cells (RBCCs) in neovascularization, the contribution of VEGFR1+ hematopoietic stem cells and endothelial precursor cells in metastasis, and the involvement of myeloid derived suppressor CD11b+/Gr‐1+ cells in the resistance of tumors to certain antiangiogenic drugs, e.g., VEGF blocking antibodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号