首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been known for over half a century that homocysteine levels are elevated in liver cirrhosis, but the basis for it is not fully understood. Using differential display, we identified betaine homocysteine methyltransferase (BHMT) as a gene down-regulated in rat liver cirrhosis and most likely involved in this dysregulation. A partial BHMT clone was isolated by screening of a cDNA library with the differential display fragment. The full-length gene was generated by primer extension of cDNA. Expression levels of BHMT in cirrhotic livers of bile duct ligated rats were compared to controls by Northern and Western blotting as well as by enzyme activity measurements. BHMT mRNA levels were reduced to 29+/-23% in established liver cirrhosis induced by bile duct ligation (BDL) as compared to controls. Enzyme assays in crude liver homogenates showed a similar reduction in BHMT activity in bile duct ligated rat livers. By Western blotting, BHMT could be detected in crude liver homogenates of control animals, but was reduced to below the limit of detection in cirrhotic livers. In conclusion, these findings establish a reduced BHMT enzyme activity in cirrhotic rat livers, which may explain the elevated plasma homocysteine levels in cirrhosis.  相似文献   

2.
Liver poly(A+)-RNA was isolated from untreated and phenobarbital-treated rats and translated in cell-free systems derived from wheat germ and rabbit reticulocyte lysates. The primary translation product of glutathione S-transferase B was comprised of two nonidentically sized subunits which comigrated on SDS-polyacrylamide gels with the purified glutathione S-transferase B subunits. The level of translatable glutathione S-transferase B mRNA in rat liver was elevated approximately 3 to 4-fold by phenobarbital administration. Our data suggest that chronic phenobarbital administration to rats increases the amount of cytosolic glutathione S-transferase B via an increase in the functional mRNA level encoding for the enzyme.  相似文献   

3.
4.
The mitochondrial matrix enzyme, ornithine aminotransferase, is induced in rat liver by the administration of a diet high in protein and by glucagon. The rate of synthesis of the enzyme is increased 100-fold in the livers of rats maintained on a 60% relative to a 0% protein diet, whereas the levels of functional and hybridizable mRNA measured by in vitro translation and through the use of a cloned cDNA probe increased by only 2- to 6-fold and 2- to 3-fold, respectively. Under conditions of glucagon induction that resulted in a 10- to 12-fold increase in the rate of enzyme synthesis, the relative level of functional ornithine aminotransferase mRNA increased by only 2-fold, and the level of hybridizable mRNA actually decreased. The rate of polypeptide chain elongation and the relative number of ornithine aminotransferase nascent chains on polysomes were 2-fold and 23-fold greater, respectively, in hepatocytes derived from 60% relative to 0% protein-fed rats. Using these data, a 23-fold increase in the translational efficiency of the mRNA was calculated. This increase, along with a 2-fold increase in the mRNA level, completely account for the 40-fold increase in the rate of ornithine aminotransferase synthesis observed in hepatocytes derived from 60% protein-fed rats. We conclude that ornithine aminotransferase synthesis is regulated at both a translational and a pretranslational level in rat liver.  相似文献   

5.
UDP-glucuronosyltransferase (transferase) clones were isolated from a cDNA bank constructed in pBR322 using transferase-enriched mRNA from the livers of phenobarbital-treated rats. The enrichment of mRNA was accomplished by polysome immunoadsorption with antibody to purified mouse liver transferase. This antibody was shown to bind specifically to rat transferase by Ouchterlony double diffusion analysis, immunoadsorption of glucuronidating activities, and selective inhibition of the immunoadsorption of in vitro synthesized enzyme by purified rat liver transferase. The isolated clones were verified to contain DNA complementary to transferase mRNA by hybrid translation-selection. Three classes of transferase cDNAs were characterized by restriction endonuclease mapping, and the largest insert-containing clone of each class was designated pUDPGTr-1, pUDPGTr-2, and pUDPGTr-3. Their insert sizes were approximately 2,400, 2,000, and 2,000 bp, respectively. All three cDNAs hybridized with a 2,300 +/- 150 bp mRNA, and each selected the translation of a 52,000-dalton polypeptide. Immunoadsorption of the 35S-labeled translation product could be competitively inhibited in each case by the addition of purified rat liver transferase. pUDPGTr-1 and pUDPGTr-3 inserts shared extensive sequence homology. This was demonstrated by Southern blot analysis using purified inserts and electron microscopic heteroduplex analysis. Southern blot analysis revealed that these cDNAs hybridized to overlapping genomic fragments. pUDPGTr-2 shared less sequence homology with the other two classes of cDNAs, based on the above criteria. In addition, mRNA corresponding to pUDPGTr-2 was elevated 5-fold by phenobarbital treatment, whereas the other mRNAs levels were unaffected. These studies demonstrate that in rat liver there are a minimum of three distinct transferase mRNAs, two of which may be associated with a common gene or gene family.  相似文献   

6.
Rat liver alkaline phosphatase (ALP) was markedly induced by treatment of rats by bile-duct ligation and colchicine injection. Taking this advantage for enrichment of ALP mRNA, we constructed a lambda gt11 liver cDNA library using polyadenylated RNA prepared from the treated rat liver, and isolated an ALP cDNA clone. The 2165 bp cDNA contained an open reading frame that encodes a 524-amino-acid-residue polypeptide with a predicted molecular mass of 57737 Da. The precursor protein contained a presumed signal peptide of 17 amino acid residues followed by 28 amino acid residues identical with the N-terminal sequence determined from the purified rat liver ALP. It was also confirmed that amino acid sequences of two CNBr-cleavage peptides obtained from liver ALP were contained within the cDNA-encoded protein. Five possible N-linked glycosylation sites were found in the molecule and a highly hydrophobic amino acid sequence at the C-terminus. The deduced polypeptide of rat liver ALP showed 88% homology to that of the human liver-type enzyme in osteosarcoma cells. RNA blot hybridization analysis identified a single species of ALP mRNA with 2.7 kb in both the control and the treated rat livers. An approx. 20-fold increase of the mRNA was detected in the treated liver at 12 h after the onset of stimulation, compared with that in the control liver.  相似文献   

7.
8.
We determined the site of synthesis of apolipoprotein (apo) E and apo-A-I in rabbit by measuring in vitro translational activity of their mRNAs from the liver and from the intestine. Poly(A+) RNA isolated from liver and intestinal epithelium of rabbits fed either a chow diet or a cholesterol-rich diet was translated in vitro in the rabbit reticulocyte lysate system using [35S] methionine as the labeled precursor. Newly synthesized apolipoproteins were immunoprecipitated with specific antisera and quantitated after electrophoresed on 10% polyacrylamide slab gels in the presence of 0.2% sodium dodecyl sulfate. The levels of liver apo-E and apo-A-I mRNAs from chow-fed rabbits are 0.41 and 0.002% of total translatable mRNA, respectively. The level of liver apo-A-I mRNA in the rabbit is approximately 500-fold lower than the reported level of apo-A-I mRNA in rat and human livers. Rabbit intestinal apo-E and apo-A-I mRNAs levels are 0.0036 and 0.67%, respectively. Our results indicate that in rabbits apo-E is synthesized primarily in the liver and that apo-A-I is synthesized primarily in the intestine. When rabbits are fed a cholesterol-rich diet, liver and intestinal apo-E in mRNA levels and intestinal apo-A-I mRNA levels are not changed. In contrast, the liver apo-A-I mRNA level increases 5-fold in response to the cholesterol-rich diet. However, because the intestinal liver apo-A-I mRNA level is so low, the 5-fold induction only increases liver mRNA levels to 2.7% of the corresponding intestinal apo-A-I mRNA level.  相似文献   

9.
ATP citrate-lyase is the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues. We have isolated a full-length cDNA copy of 4.3 kilobase pairs encoding the ATP-citrate lyase mRNA by screening rat liver cDNA library using oligonucleotide probes designed from peptide sequences obtained from the purified rat enzyme. Expression of this cDNA in bacteria, followed by immunoblotting with antibody directed against the ATP citrate-lyase, further demonstrated the identity of this clone. Nucleic acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1100 amino acids in length with a calculated molecular weight of 121,293. RNA blot analysis indicated an mRNA species of about 4.3 kilobase pairs in livers of chow-fed rats. Rats maintained on low fat, high carbohydrate diets exhibited a striking increase (50-fold) in the level of liver ATP citrate-lyase mRNA as compared with the control animals maintained on a normal diet. The tissue distribution of this mRNA in chow-fed animals revealed a relatively high abundance of the message in liver and adrenal, moderate levels were found in lung, brain, and large intestine with only trace amounts of the message in small intestine, stomach, testis, spleen, pancreas, kidney, and heart. During rat development, the ATP citrate-lyase mRNA was relatively high in the liver at parturition, followed by a reduction in its level during suckling. Higher amounts of the mRNA were detected again in adult animals. The isolation and characterization of the mRNA for ATP citrate-lyase will allow further studies on the reaction mechanism and metabolic regulation of this key enzyme in lipogenesis and cholesterogenesis.  相似文献   

10.
The cDNA for rat glutathione peroxidase mRNA was isolated from liver cDNA library in lambda gt11 by cross-hybridization using the mouse cDNA, and it's nucleotide sequence was determined. The selenocysteine which constitutes an active center of this enzyme was encoded by TGA, a nonsense codon in general, as was the cases with mouse and human glutathione peroxidase. Northern blot analysis elucidated that the mRNA for glutathione peroxidase was markedly diminished in selenium deficient rat liver as compared with that of normal rat livers. The result suggested that the de novo synthesis of the mRNA would be regulated by selenium.  相似文献   

11.
The administration of N6, O2'-dibutyryl cyclic AMP and theophylline to fasted-refed rats produces an 8-fold stimulation of the relative rate of hepatic phosphoenolpyruvate carboxykinase synthesis in 90 min, as measured by isotopic immunochemical techniques in vivo. The mechanism of this induction was studied first by using a homologous, noninitiating cell-free protein-synthesizing system derived from the liver of fasted-refed, cyclic AMP-treated rats. In such a system, a 5-fold increase in phosphoenolpyruvate carboxykinase synthseis is observed at 20 min post-treatment and a 9-fold stimulation at 75 min, indicating a rapid increase in the number of ribosomes engaged in the translation of the enzyme mRNA after exposure to cyclic AMP. The level of functional mRNA coding for phosphoenolpyruvate carboxykinase was then assayed in a wheat germ protein-synthesizing system capable of using rat liver mRNA as template. The template activity for phosphoenolpyruvate carboxykinase synthesis is greatly increased in the poly(A)-containing RNA isolated from cyclic AMP-induced animals. Both the increase in the capacity of the liver extract for in vitro phosphoenolpyruvate carboxykinase synthesis and the emergence of enzyme mRNA detected in the wheat germ assay are completely prevented by a pretreatment with cordycepin at doses which inhibit the appearance in the cytoplasm of newly synthesized poly(A)-containing RNA. These data demonstrate that the induction of hepatic phosphoenolpyruvate carboxykinase by cyclic AMP is characterized by the rapid build-up of newly synthesized, actively translated mRNA coding for the enzyme. The messenger accumulation could be due to an increase in the rate of its production or a decrease in the rate of its degradation.  相似文献   

12.
Liver poly(A+)-RNA isolated from untreated and 3-methylcholanthrene treated rats has been translated in the rabbit reticulocyte cell-free system in order to determine the level of translationally active cytochrome P-448, glutathione S-transferase B and serum albumin mRNAs. Translatable cytochrome P-448 mRNA was not detected in untreated rats; however in animals treated with 3-methylcholanthrene cytochrome P-448 mRNA was elevated markedly. Functional rat liver glutathione S-transferase B mRNA was elevated 2-fold by 3-methylcholanthrene administration, whereas the serum albumin mRNA level was decreased by 50%. Our results indicate that 3-methylcholanthrene is not just a specific inducer of drug metabolizing enzymes but can alter the mRNA level encoding other polypeptides and thus affect cellular homeostasis.  相似文献   

13.
Polyadenylated mRNA was isolated from chick embryo liver following induction of hepatic porphyria. The RNA was translated in vitro using a wheat germ cell-free system and delta-aminolaevulinate synthase was identified in the translation products by indirect immunoprecipitation. The enzyme was not apparent in the translation products of polyadenylated RNA from non-induced livers. The molecular weight of delta-aminolaevulinate synthase synthesized in vitro was 70000 and the protein was estimated to represent up to 5% of total products synthesised in vitro. These data demonstrate for the first time that induction of chick embryo liver delta-aminolaevulinate synthase activity in hepatic porphyria correlates with a large increase in the translational capacity of isolated polyadenylated RNA for this enzyme and, together with preliminary cDNA . RNA hybridization studies, indicate that an increase in the level of delta-aminolaevulinic synthase mRNA is responsible.  相似文献   

14.
Using a titration procedure, we measured the proportion of alpha-fetoprotein (AFP) and albumin mRNA in normal, regenerating, and preneoplastic rat livers. AFP mRNA constitutes approximately 0.006% of the polysomal polyadenylated RNA of normal livers and this proportion increases only slightly before the onset of DNA synthesis in liver regeneration induced by partial hepatectomy or CCl4 injury. In either model of liver regeneration, the proportion of AFP mRNA in polysomal RNA is highest approximately 24 h after the peak of DNA synthesis. The increase in the proportion of AFP mRNA in polysomal RNA is relatively small during liver regeneration (2-4-fold) but is larger (30-50-fold) in preneoplastic livers of rats fed a choline-deficient diet containing 0.1% ethionine. In contrast to those changes in AFP mRNA, albumin mRNA levels remain unchanged during liver regeneration and double in preneoplastic livers. Our results indicate that the concept of "retrodifferentiation" as it applies to liver regeneration and certain types of hepatic neoplasia needs reevaluation.  相似文献   

15.
应激对同型半胱氨酸代谢的负性调节   总被引:8,自引:0,他引:8  
Wu SQ  Qian LJ 《生理学报》2004,56(4):521-524
基于应激对高同型半胱氨酸血症具有诱导作用,本文探索了应激致同型半胱氨酸(homocysteine,HCY)代谢变化的关键环节,并初步揭示了该作用的意义。以束缚应激法建立大鼠应激模型,采用高压液相-荧光检测法测定血浆HCY水平,用放射性酶学法检测不同组织中胱硫醚β合成酶(cystathionine beta-synthase,CBS)活性的变化,以及RT-PCR法和Northern blot法检测CBS mRNA水平的变化。结果可见,束缚应激可导致大鼠高同型半胱氨酸血症的发生;CBS在肝脏具有最强的代谢活性,肾脏其次,而心脏和血液中活性极低;应激大鼠肝脏CBS活性和mRNA水平均显著降低(P<0.05),应激3周时分别为对照组的70.6%±5.9%和55.9%±4.3%。以上研究结果表明,应激对HCY转硫代谢途径存在负性调节作用,其对肝脏CBS基因转录水平的调控是应激所致高同型半胱氨酸血症发生的重要诱因;肝脏是应激对HCY代谢调节的主要场所。  相似文献   

16.
The quantity of translatable fatty acid synthetase mRNA in liver of rats subjected to different hormonal states was determined with a rabbit reticulocyte lysate cell-free translation system. Both membrane-free polysomal and total cellular poly (A)-containing RNA were translated. The level of translatable fatty acid synthetase mRNA was 11-fold or more lower in livers of diabetic rats than in similar animals treated with insulin. In contrast, both glucagon and dibutyl cyclic AMP caused a 3-fold reduction over controls in the amount of translatable fatty acid synthetase mRNA in livers of animals refed a fat-free diet for 12 hr. These changes are consistent with the previously reported alterations in the relative rates of fatty acid synthetase synthesis measured in vivo. This suggests that the changes in the amount of fatty acid synthetase that occur in liver in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

17.
After rats deprived of protein for several days are fed a meal containing protein, hepatic DNA replication is induced. When nuclear DNA synthesis is stimulated in the normally quiescent rat liver by a dietary manipulation, we examined the changes of the steady-state levels of messenger RNA for c-myc. Levels of c-myc mRNA are gradually elevated approximately 4 to 5-fold above normal in the livers of rats that are fed for several days a diet that lacks protein. After a nutritional shift from a protein-free diet to a diet containing 50% casein, the levels of c-myc mRNA decrease rapidly by 2 h and returned to approximately basal levels after 8 h. Our results suggest that c-myc expression during the prereplicative stage of liver is likely to reflect events associated with entry and progression of hepatocytes into the cell cycle.  相似文献   

18.
Clofibrate induces hypertrophy and hyperplasia and marked changes in the activities of various enzymes in rat liver. We examined the effects of treatment of rats with clofibrate on enzyme induction and on rates of metabolic flux in hepatocytes isolated from the periportal and perivenous zones of the liver. Clofibrate induced the activities of carnitine acetyltransferase (90-fold), carnitine palmitoyltransferase (3-fold) and NADP-linked malic enzyme (3-fold) to the same level in periportal as in perivenous hepatocytes, suggesting that these enzymes were induced uniformly throughout the liver acinus. Increased rates of palmitate metabolism and ketogenesis after clofibrate treatment were associated with: a more oxidised mitochondrial redox state; diminished responsiveness to glucagon and loss of periportal/perivenous zonation. Despite the marked liver enlargement and hyperplasia caused by clofibrate, the normal periportal/perivenous zonation of alanine aminotransferase and gluconeogenesis was preserved in livers of clofibrate-treated rats, indicating that clofibrate-induced hyperplasia does not disrupt the normal acinar zonation of these metabolic functions.  相似文献   

19.
Δ9-Desaturase is a key enzyme in the synthesis of desaturated fatty acyl-CoAs. Desaturase is an integral membrane protein induced in the endoplasmic reticulum by dietary manipulations and then rapidly degraded. The proteolytic machinery that specifically degrades desaturase and other short-lived proteins in the endoplasmic reticulum has not been identified. As the first step in identifying cellular factors involved in the degradation of desaturase, liver subcellular fractions of rats that had undergone induction of this enzyme were examined. In livers from induced animals, desaturase was present in the microsomal, nuclear (P-1), and subcellular fractions (P-2). Incubation of desaturase containing fractions at physiological pH and temperature led to the complete disappearance of the enzyme. Washing microsomes with a buffer containing high salt decreased desaturase degradation activity. N-terminal sequence analysis of desaturase freshly isolated from the P-1 fraction without incubation indicated the absence of three residues from the N terminus, but the mobility of this desaturase preparation on SDS-PAGE was identical to the microsomal desaturase, which contains a masked N terminus under similar purification procedures. Addition of concentrated cytosol or the high-salt wash fraction did not enhance the desaturase degradation in the washed microsomes. Extensive degradation of desaturase in the high-salt washed microsomes could be restored by supplementation of the membranes with the lipid and protein components essential for the reconstituted desaturase catalytic activity. Lysosomotrophic agents leupeptin and pepstatin A were ineffective in inhibiting desaturase degradation. The calpain inhibitor, N-acetyl-leucyl-leucyl-methional, or the proteosome inhibitor, Streptomyces metabolite, lactacystin, did not inhibit the degradation of desaturase in the microsomal or the P-1 and P-2 fractions. These results show that the selective degradation of desaturase is likely to be independent of the lysosomal and the proteosome systems. The reconstitution of complete degradation of desaturase in the high-salt–washed microsomes by the components essential for its catalytic activity reflects that the degradation of this enzyme may depend on a specific orientation of desaturase and intramembranous interactions between desaturase and the responsible protease.  相似文献   

20.
Cloned cDNAs for human liver serine-pyruvate aminotransferase (Ser-PyrAT) were obtained by screening of a human liver cDNA library with a fragment of cDNA for rat mitochondrial Ser-PyrAT as a probe. Two clones were isolated from 50,000 transformants. Both clones contained approximately 1.5 kb cDNA inserts and were shown to almost completely overlap each other on restriction enzyme mapping and DNA sequencing. The nucleotide sequence of the mRNA coding for human liver Ser-PyrAT was determined from those of the cDNA clones. The mRNA comprises at least 1487 nucleotides, and encodes a polypeptide consisting of 392 amino acid residues with a molecular mass of 43,039 Da. The amino acid composition determined on acid hydrolysis of the purified enzyme showed good agreement with that deduced from the nucleotide sequence of the cDNA. In vitro translation of the mRNA derived from one of the isolated clones, pHspt12, as well as that of mRNA extracted from human liver, yielded a product of 43 kDa which reacted with rabbit anti-(rat mitochondrial Ser-PyrAT) serum. Comparison of the deduced amino acid sequences of human Ser-PyrAT and the mature form of rat mitochondrial Ser-PyrAT revealed 79.3% identity. Although human Ser-PyrAT appears to be synthesized as the mature size, the 5'-noncoding region of human Ser-PyrAT mRNA contains a nucleotide sequence which would encode, if translated, an amino acid sequence similar to that of the N-terminal extension peptide of the precursor for rat mitochondrial Ser-PyrAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号