首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An I-J-subregion controlled determinant is expressed on Ly-1 inducer and Ly-1,2 acceptor T cells in the feedback suppression circuit. Ly-1 T cells absorb the I-J antibody reactive with the Ly-1,2 acceptor T cell, suggesting that both inducer and acceptor T cells have the same 1-J determinant. Since less than 10 percent of Ly-1 or Ly-1,2 T cells are killed by anti-I-J plus complement treatment, the I-J determinant demarcates functionally distinct subsets of both the Ly-1 and Ly-1,2 T-cell sets. This I-J determinant is not expressed on a detectable number of Ly-1 helper T cells which induce B lymphocytes to produce anti-sheep red cell antibody in tissue culture.Abbreviations used in this paper NMS normal mouse serum - BSS balanced salt solution - PFC plaque forming cells - Ig immunoglobulin - SRBC sheep red blood cells  相似文献   

2.
Immunoregulation as a consequence of thermal injury was investigated by using a murine model involving a 30% surface area full thickness burn. Both allogeneic mixed lymphocyte reaction (MLR) and in vitro anti-SRBC responses were depressed from days 3 to 25 post-burn. Suppressor T cells could be identified in both systems between days 5 and 15. On day 5 post-burn, an Ly-1+,2-, I-J+ T cell is responsible for the majority of the suppression observed. This cell behaves like a T suppressor inducer T cell in that it must interact with an Ly-2+ cyclophosphamide-sensitive cell to manifest suppression. On day 7 post-burn, only Ly-1-,2+ suppressor T cells are found which can directly suppress the activity of Ly-1+,2- helper T cells. Thus, these cells behave as T suppressor effector cells. We suggest that feedback suppression is in operation after thermal injury, with functional suppressor inducer cells appearing on day 5 post-burn, leading to the appearance of T suppressor effector cells by 7 days post-burn. Recovery from post-burn immunosuppression occurs by day 25 post-burn and is associated with the appearance of V. villosa-adherent T cells, whose activity antagonizes that of the day 7 post-burn suppressor effector. These cells may represent contrasuppressor T cells, which could play a role in the restoration of immunocompetence after burn injury.  相似文献   

3.
T cell antigen-specific suppressor factors (TsF) consist of two distinct polypeptide chains: one that binds antigen (ABM) and one that bears I-J region markers (I-J+ chain). We studied the functional role of these two molecules in delivering the biologic message of suppression to its appropriate target cell. Two different biologically active TsF were used in these studies: TsiF, a T suppressor-inducer factor consisting of an ABM secreted by Ly-1 T cells (Ti-ABM) and an I-J+ subfactor secreted by Ly-1 T cells (I-Ji), which initiates the suppressor circuit by inducing an Ly-1,2 T cell; and TseF, a T suppressor-effector factor consisting of an ABM secreted by Ly-2 T cells (Te-ABM) and an I-J+ subfactor secreted by Ly-1 T cells (I-Je), which delivers the biologic message of suppression to the T helper (TH) cell. In both TsF, the ABM and I-J+ chain are noncovalently associated and can be easily separated. Both molecules must be present, however, for biologic activity of the TsF to be manifest. We studied the role of each chain in delivering these biologically active messages by constructing "hybrid" factors made from mixing the ABM from TsiF with I-J+ chains from either TsiF or TseF and determined which of these chains could reconstitute functional TsiF activity. Likewise, we mixed the AMB from TseF with I-J+ chains of TsiF or TseF to determine which I-J+ chain could reconstitute TseF activity. We found that I-J+ chain from TsiF (I-Ji) can reconstitute ABM from TsiF to form a functional TsiF capable of inducing suppression but cannot reconstitute ABM from TseF to form a functional TsiF capable of suppressing the activity of TH cells. Likewise, the addition of I-J+ chain from TseF to ABM from TseF can reconstitute its ability to suppress TH responses, but I-J+ chain from TsiF plus ABM from TseF has no effect on these TH cell responses. We did find, however, that this hybrid TsF composed of the ABM from TseF and the I-J+ chain from TsiF is capable of suppressing the Ly-1,2 Ttrans cell, the cell normally induced by the ABM + I-J+ suppressor inducer complex from T suppressor-inducer cells (TsiF).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
T cells involved in the generation of suppressor activity bear an I-J-subregion controlled determinant (e. g., J1) which is distinct from that (e. g., J1) found on non-T: non-13 accessory cells. T-cell subsets examined include Ly-1 inducer and Ly-1,2 acceptor cells which collaborate to generate suppressor activity in the in vitro sheep red blood cell antibody system. Non-T:non-B accessory cells examined include accessory cells involved in concanavalin-A induced, T-cell proliferative responses and in in vitro antibody responses to sheep red blood cells. These results provide evidence for serologic and genetic complexity of the I-J subregion of the murine H-2 gene complex.  相似文献   

5.
We studied the mode of action of the nonspecific T suppressor factor (nsTsF-1) made in the picryl (TNP) system when T acceptor cells armed with antigen-specific TsF are triggered by antigen in the context of I-J. This suppressor factor does not inhibit the passive transfer of contact sensitivity directly, as shown by its failure to inhibit passive transfer by immune cells deprived of I-A+ cells. Its immediate target is an immune, antigen-specific, Ly-1+2-, I-A+ T cell. This cell, which may be regarded as a T suppressor effector cell (Ts-eff-2), produces nsTsF-2 when exposed sequentially to nsTsF-1 and antigen. This nsTsF subsequently inhibits the passive transfer of contact sensitivity. The action of nsTsF-2 is MHC genetically restricted. As the nsTsF-2 bears I-A determinant(s), this raises the possibility that it may act by combining with the recognition site for I-A on the T cell that mediates contact sensitivity.  相似文献   

6.
The mouse lymphocyte surface alloantigen, Ly-31, defined by monoclonal antibody N1.10 (IgG2b, k) and controlled by a gene locus closely linked to theAkp-2 locus on chromosome 4, was biochemically investigated. By employing a quantitative immunoassay system, it was found that the Ly-31.1-specific antibody detected an allotypic determinant of mouse alkaline phosphatase. Ly-31.1, i. e., mouse alkaline phosphatase, was expressed predominantly in kidney and bone and was also detected in placenta, lung, and testis. Concerning tumor cell lines, they varied in the amount of antigen present, with both T and B lymphoid lineages selectively possessing the antigen. In normal lymphoid tissues, lesser amounts of antigen were detected. The binding of mouse alkaline phosphatase to Ly-31.1-specific monoclonal antibodies was specific in nature. The Ly-31.1 antigen was immunoprecipitated from the lysates of surface-radiolabeled YAC-1 moloney leukemia cells, and appeared as a single band of about 78 000 under both reduced and nonreduced conditions on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Furthermore, treatment of tumor cell lines with phosphatidylinositol-specific-phospholipase C resulted in the removal of Ly-31 antigen from the cell surface. These results suggest that a gene cluster containing theLy-31 andAkp-2 loci which control the alkaline phosphatase is formed on mouse chromosome 4. The Ly-31 antigen is the first enzyme demonstrated to be a lymphocyte surface alloantigen.  相似文献   

7.
Ly-2+ effectors of T cell-mediated suppression require inducing signals from antigen and a helper cell bearing the Ly-1+:Qa1+ surface phenotype. In this report, we have further examined the helper cell requirements for suppressor cell induction of antibody production in mice. By using the T cell subset education procedure in vitro, we have activated T cells to sheep red blood cells (SRBC) antigens and then purified Ly-2 cells before testing for suppressor activity in assay cultures of defined T and B cell subsets. We have confirmed our previous observations that Ly-1+:Qa1+ cells are required for activation of T suppressors, but have found that under the appropriate conditions, there is not a strict requirement for the Ly-123 subset of T cells. Furthermore, if Ly-23 cells are stimulated in the presence of Ly-1+:Qa1- T cells, effective suppressors can be obtained only if a source of Ly-1:Qa1+ inducers is added to the assay culture. If Ly-23 cells are activated by antigen in the absence of Ly-1 cells, subsequent exposure to the Ly-1+:Qa1+ subset under the conditions tested here is not sufficient to activate suppressors. These results show that effectors of suppression, like B cells and cytotoxic T lymphocytes, may respond to two helper cells.  相似文献   

8.
Ly-6E, a glycosyl phosphatidylinositol (GPI)-anchored murine alloantigen that can activate T cells upon antibody cross-linking, has been converted into an integral membrane protein by gene fusion. This fusion product, designated Ly-6EDb, was characterized in transiently transfected COS cells and demonstrated to be an integral cell surface membrane protein. Furthermore, the fusion antigen can be expressed on the surface of the BW5147 class "E" mutant cell line, which only expresses integral membrane proteins but not GPI-anchored proteins. The capability of this fusion antigen to activate T cells was examined by gene transfer studies in D10G4.1, a type 2 T cell helper clones. When transfected into D10 cells, the GPI-anchored Ly-6E antigen, as well as the endogenous GPI-anchored Ly-6A antigen, can initiate T cell activation upon antibody cross-linking. In contrast, the transmembrane anchored Ly-6EDb antigen was unable to mediate T cell activation. Our results demonstrate that the GPI-anchor is critical to Ly-6A/E-mediated T cell activation.  相似文献   

9.
A new member of the mouse Ly-6SF, designated Ly-6I, has been isolated as a gene homologous to a segment of the Ly-6C gene. A single allelic difference in the mature protein sequence was identified, which is similar to other Ly-6SF members. Ly-6I mRNA has been detected in a wide range of tissues and cell lines, and a rabbit polyclonal Ab has been used to determine that Ly-6I protein is present at a low constitutive level on cell lines from several different lineages. In contrast to Ly-6C and Ly-6A/E, the Ly-6I gene is only weakly responsive to IFNs. Expression in vivo is most abundant on bone marrow populations and is coexpressed with Ly-6C on granulocytes and macrophages. However, Ly-6I is also expressed on immature B cell populations that do not express Ly-6C. Expression on mature B cells in spleen is uniformly low. Similarly, Ly-6I is expressed on TCRlow/int, but not TCRhigh, thymocytes. Ly-6I is re-expressed on Ly-6Chigh T cells in the periphery. Thus, Ly-6I may be a useful marker to define maturation stages of both T and B lymphocytes as well as subsets of monocytes and granulocytes.  相似文献   

10.
Cross-linking of cell surface Ly-6C molecules with the 6C3 rat monoclonal antibody (MAb) followed by anti-rat immunoglobulin antibody acts in concert with phorbol myristate acetate (PMA) as a potent mitogenic stimulus for normal T cells. Specificity of this stimulation was demonstrated by its absence in T cells from NZB, NOD, or STb/J mice which lack the 6C3 determinant. In 6C3+ normal strains, the extent of 6C3-mediated stimulation varied, depending on the level of 6C3 antigen expression. Analysis of this stimulation in purified T cell subsets revealed that in Ly-6.1 strains (e.g., BALB/c, CBA/J), Lyt-2+ cells responded, but not L3T4+ cells, whereas in Ly-6.2 strains (e.g., C57BL/6, MRL-+/+), both subsets produced IL 2 and proliferated, although with different kinetics. Moreover, in adult MRL-+/+ mice, the minor Lyt-2-/L3T4- subset from the lymph nodes gave low responses to 6C3 cross-linking, whereas that from the thymus reacted strongly. Stimulation via Ly-6C therefore provides a pathway for differential activation of normal T cells. In contrast, the expanding population of Lyt-2-/L3T4- T cells from lpr/lpr or gld/gld mice did not proliferate in response to 6C3 antigen cross-linking plus PMA despite high levels of 6C3 antigen expression. Responsiveness of lpr/lpr T cells could not be restored with IL 1, IL 2, or both. These T cells also failed to be triggered by conjunction of PMA with either Thy-1 antigen cross-linking or concanavalin A. Moreover, they were not stimulated, in the presence of PMA, by doses of ionomycin that were optimal for normal T cells, but did respond to higher ionomycin concentrations (2 micrograms/ml), and this response was not altered by Ly-6C cross-linking. It is concluded that the Ly-6C pathway of T cell activation is not functional in the aberrant lpr/lpr (and gld/gld) T cells, and that this defect may reflect abnormalities of intracellular signaling.  相似文献   

11.
Three monoclonal antibodies were produced by fusing mouse myeloma cell line NS-1 with spleen cells from C3H/An mice hyperimmunized with B6-H-2k spleen cells. These antibodies recognized an alloantigen displaying a similar strain distribution pattern to the Ly-6.2 and Ala-1.2 alloantigens. Analysis of C×B and B×H recombinant inbred mice revealed close linkage of genes controlling Ly-m6 and Ly-6. The monoclonal antibodies lysed 70 percent of cells in lymph nodes and 60 percent in spleen in direct cytotoxicity assays, but did not lyse significant numbers of cells of thymus and bone marrow. Separated T and B cells were reactive with the antibodies, but T cells were more sensitive to the antibody and complement than B cells. Virtually all cells in cultures of cells activated in the mixed lymphocyte reaction or by Concanavalin A were reactive with the monoclonal antibodies. Direct plaque-forming cells were completely eliminated by the monoclonal antibody and complement. By absorption tests, cells from all organs tested so far (thymus, lymph node, spleen, bone marrow, brain, kidney and liver) were shown to express the Ly-m6 determinant. Tumor cell lines with T, B or stem cell characteristics were reactive with the monoclonal antibody by direct cytotoxicity and absorption assays.  相似文献   

12.
The murine Ly-6A cell surface antigen is normally present on a minor subset of mature T cells. This marker has been shown to become highly expressed on mitogen-activated T cells. We found that expression of Ly-6A is also markedly increased in resting T cells by incubation with IFN-alpha/beta or IFN-gamma. Here, we compared the effect of the immunosuppressant cyclosporine A (CsA) on Ly-6A induction by IFN and concanavalin A (Con A). The augmentation of Ly-6A expression produced by treatment of T cells with IFN-alpha/beta or IFN-gamma was found not to be affected by CsA concentrations up to 2 micrograms/ml. In contrast, at doses as low as 50 ng/ml, CsA prevented the enhancement of Ly-6A expression in Con A-treated T-cell cultures. Culture supernatant transfer experiments were performed to further explore this effect of CsA. It was found that supernatants from Con A-activated T cells enhanced Ly-6A expression in resting T cells. This activity could be neutralized with an anti-IFN-gamma monoclonal antibody. Supernatants from T cells treated with Con A in presence of CsA lacked Ly-6A-enhancing activity. Taken together, these data suggest that the inhibition by CsA of Ly-6A induction in Con A-treated T cells reflects the known inhibitory effects of the drug on IFN-gamma secretion. This may imply the existence in T cells of an autocrine circuit involving IFN-gamma and regulating Ly-6A expression.  相似文献   

13.
BACKGROUND: The Ly-6 family has many members, including Ly-6C and Ly-6G. A previous study suggested that the anti-Ly-6G antibody, RB6-8C5, may react with Ly-6Chi murine bone marrow (BM) cells. This finding has been interpreted as cross-reactivity of RB6-8C5 with the Ly-6C antigen, and has been generalized to many hematopoietic cell types, using the terminology Ly-6G/C. The present study was undertaken to determine whether anti-Ly-6G antibodies truly cross-react with the Ly-6C antigen on multiple hematopoietic cell types. METHODS: Splenocytes, thymocytes, and BM cells obtained from Ly-6.1 and Ly-6.2 strains of mice were stained with a variety of antibodies to Ly-6C and Ly-6G. Flow cytometric analysis was performed on these populations. RESULTS: Evaluation of anti-Ly-6C and anti-Ly-6G staining showed only Ly-6C expression and no Ly-6G expression on subsets of splenic T and B cells and thymocytes from Ly-6.1 and Ly-6.2 mice. Bone marrow cells were identified that express both Ly-6G and Ly-6C; no Ly-6G+Ly-6C- populations were seen. CONCLUSIONS: Multiple Ly-6C+ hematopoietic cell populations were identified that do not stain with anti-Ly-6G antibodies. This calls into question the use of the Ly-6G/C nomenclature and suggests that epitopes recognized by anti-Ly-6G antibodies should simply be designated Ly-6G.  相似文献   

14.
The passive transfer of contact sensitivity (CS) by immune cells into normal animals requires the interaction of two distinct Ly-1+ T cells, one which is Vicia villosa lectin (VV)-nonadherent, the other which adheres to VV. Functional deletion of either cell type abrogates the adoptive transfer of CS into normal animals, whereas VV-nonadherent cells alone can transfer CS into animals pretreated with cyclophosphamide (Cy). An antigen-specific T suppressor factor, designated TNP-TsF, inhibits the transfer of CS into normal adoptive recipients. TNP-TsF mediates its suppressive activity by inducing an I-J+ subfactor (designated I-J2) from the assay population by the interaction of PC1-F (a TNP-binding subfactor of TNP-TsF) with antigen-primed Ly-2+ T cells. This I-J+ subfactor then complements TNBS-F (an antigen-nonbinding subfactor of TNP-TsF) to form an antigen-nonspecific effector molecule which suppresses DTH responses in an antigen-nonspecific fashion. We report here that TNP-TsF suppresses the adoptive transfer of CS into normal animals but not into animals pretreated with Cy. TNBS-F + I-J2, the effector complex of TNP-TsF, also suppresses the transfer of CS into normal but not Cy-treated animals. When the Ly-1 immune cells were separated into VV-adherent and -nonadherent populations, the TNBS-F + I-J2 suppressor complex suppressed the functional activity of the VV-adherent cell population, but not the VV-nonadherent cells. This suppressive activity correlates with the need for VV-adherent cells in the transfer of CS into normal but not Cy-treated recipients. When an I-J+ molecule (I-J1) from an SRBC-specific TsF was used in place of I-J2 to form a suppressor complex with TNBS-F, this TNBS-F + I-J1 TsF suppressed the transfer of CS into both normal and Cy-treated recipients. This difference in functional suppressive activity correlated with a difference in target cell specificity: TNBS-F + I-J1 suppressed the VV-nonadherent TDTH cell, whereas TNBS-F + I-J2 suppressed the VV-adherent T cell of CS. Immune cells which are transferred under conditions which do not require the VV-adherent cell for transfer are not suppressed by TNBS-F + I-J2 or TNP-TsF, but are suppressed by the TNBS-F + I-J1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Spleen cells from a (BALB/c x C57BL/6)F1 mouse immunized with CBA/J spleen cells were fused with the myeloma cell line NS-1. One of the six established hybrid cell lines continuously secreted antibody that recognized a new antigenic specificity, tentatively called "Ly-10.1". This newly found antigen is expressed on thymocytes, on splenic T and B cells, on bone-marrow cells, and on the cells derived from brain, kidney and liver. It is also expressed on a continuous cell line, 416B, with stem-cell characteristics. The unique tissue distribution and, furthermore, a distinct strain distribution pattern distinguishes Ly-10.1 from any known murine lymphocyte alloantigen. On the basis of reactivity with cells of the C57BL/6-Lyt-1a congenic strain, one gene governing Ly-10 expression is assigned to the Lyt-1 region of chromosome 19.  相似文献   

16.
We have previously demonstrated the relationship between antigens on BALB/c methylcholanthrene (MC)-induced fibrosarcomas and T cell regulatory molecules by using a variety of antisera raised to these sarcomas in BALB/c and BALB/c X C57BL/6 (CB6F1) mice. One such pool of antiserum, a CB6F1 anti-CMS 4 (Pool XIV) serum, was used to investigate the nature of the T cell regulatory structures recognized by these antibodies. Pool XIV antiserum was capable of blocking the induction of feedback suppression by Ly-1 TsiF, an SRBC-specific suppressor T cell factor secreted by Ly-1+, 2- I-J+ T cells. Ly-1 TsiF induces suppression by interacting with an Ly-1+,2+ I-J+ T cell target. Successful interaction of Ly-1 TsiF with its target cell requires genetic homology between inducer and target cells at the variable region of the immunoglobulin heavy chain gene complex (Igh-V). The addition of Pool XIV antiserum to primary in vitro anti-SRBC cultures resulted in blocking the ability of Ly-1 TsiF from Igha (BALB/c) and Ighj (CBA/J) mice to induce suppression on syngeneic cells, whereas suppression induced by Ly-1 TsiF in Ighb (B6), Ighc (DBA/2), Ighd (A/J), and Ighe (AKR) mice are unaffected by addition of the Pool XIV antiserum. The ability of Pool XIV antiserum to block Ly-1 TsiF activity is linked to the Igh region, because Pool XIV antiserum can block Ly-1 TsiF from BALB/c (H-2d, Igha) and the Igh congenic B.C9 (H-2b, Igha) while not affecting Ly-1 TsiF activity on B6 (H-2b, Ighb) or its Igh congenic C.B20 (H-2d, Ighb). In CB6F1 animals, Pool XIV antiserum could block the ability of CB6F1 Ly-1 TsiF to suppress BALB/c spleen cells but not B6 spleen cells. Conversely, Pool XIV antiserum could block the ability of BALB/c Ly-1 TsiF to suppress CB6F1 spleen cells, whereas B6 Ly-1 TsiF showed normal suppressive activity in the presence of Pool XIV antiserum. In contrast, Pool XIV was capable of blocking the ability of Ly-1 TsiF from BALB/c into CB6F1 bone marrow chimeras (BMC) to suppress both BALB/c and B6 mice, whereas the activity of Ly-1 TsiF from B6 into CB6F1 BMC on BALB/c or B6 spleen cells was unaffected by the addition of Pool XIV antiserum. We then investigated the molecular nature of the molecule recognized by Pool XIV antiserum on the Ly-1 TsiF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Activation of islet-specific T cells plays a significant role in the development of type 1 diabetes. In an effort to control T cell activation, we expressed the inhibitory receptor, Ly-49A, on islet-specific mouse CD4 cells. Ag-mediated activation of Ly-49A T cells was inhibited in vitro when the Ly-49A ligand, H-2D(d), was present on APCs. Ag-driven T cell proliferation, cytokine production, and changes in surface receptor expression were significantly reduced. Inhibition was also evident during secondary antigenic challenge. Addition of exogenous IL-2 did not rescue cells from inhibition, suggesting that Ly-49A engagement does not lead to T cell anergy. Importantly, in an adoptive transfer model, Ly-49A significantly delays the onset of diabetes. Together these results demonstrate that the inhibitory receptor Ly-49A effectively limits Ag-specific CD4 cell responses even in the presence of sustained autoantigen expression in vivo.  相似文献   

18.
Differential epitope expression of Ly-48 (mouse leukosialin)   总被引:3,自引:0,他引:3  
Ly-48 is a major sialoglycoprotei expressed on the surface of variety of mouse hematopoietic cells that exhibits many characteristics isoforms and may function in signal transduction and cell adhension. Ly-48 is recognized by the 3E8-specific monoclonal antibody (mAb) and it has been suggested that it is the same antigen recognized by another mAb known as S7. In this report, we demonstrate definitively by transfection of a Ly-48 cDNA that S7 and two previously uncharacterized mAbs, S11 and S15, recognize the same antigen as teh 3E8-specific mAb. However, 2-D gel immunoblot analyses demonstrate the complex nature of Ly-48. Although all four mAbs react similarly with lysates from the M-45 B-cell myeloma line, 2-D immunobot analyses of the EL-4 T-cell line reveal three distinct patterns of reactivity. Further, while transfection of Ly-48 into the K562 erythroleukemic cell line conferred reactivity to all four mAbs, transfection of the Ly-48 cDNA into the nonhematopoietic cell line, Line 1, conferred reactivity only to the S11 and S15 mAbs. Thus, the Line 1 transfectants suggest the importance of posttranslational modifications in the expression of the 3E8 and S7 epitopes. Interestingly , developing fetal liver cells show the same pattern of differential Ly-48-specific mAb reactivity. The developing early fetal liver cells are reactive with S11 and S15 but are negative, to very weakly, reactive with the 3E8-and S7-specific mAbs. These results show that Ly-48 epitopes can be expressed independently on cell lines in vitro and are differentially expressed on healthy cells in vivo.  相似文献   

19.
Spleen cells from a (BALB/cxC57BL/6)F1 mouse immunized with CBA/J spleen cells were fused with the myeloma cell line NS-1. One of the six established hybrid cell lines continuously secreted antibody that recognized a new antigenic specificity, tentatively called Ly-10.1. This newly found antigen is expressed on thymocytes, on splenic T and B cells, on bone-marrow cells, and on the cells derived from brain, kidney and liver. It is also expressed on a continuous cell line, 416B, with stem-cell characteristics. The unique tissue distribution and, furthermore, a distinct strain distribution pattern distinguishes Ly-10.1 from any known murine lymphocyte alloantigen. On the basis of reactivity with cells of the C57BL/6-Lyt-1a congenic strain, one gene governing Ly-10 expression is assigned to the Lyt-1 region of chromosome 19.We chose the notation Ly-10 rather than Ly-9 to allow for a future decision that Lgp 100 (Ledbetter et al. 1979) should be renamed Ly-9.  相似文献   

20.
We describe the properties of two Ly-1+2- T cell clones (Ly-1.14 and Ly-1.21), which are maintained in long-term culture in the absence of other cell types. The clones require media containing a source of interleukin 1 as well as interleukin 2. They retain physiologic responses to interleukin 1, which is required for optimal production of T cell lymphokines by these clones in response to concanavalin A (Con A). The two Ly-1+2- T cell clones differ in their production of lymphokines after stimulation by Con A. The supernatant of clone Ly-1.21 promotes the proliferation of T cells maintained in long-term culture, induces antibody synthesis in cultures of B cells and antigen, and induces the differentiation of cytolytic cells in cultures of thymocytes and antigen; these assays define the properties of T cell growth factor (TCGF), T cell-replacing factor for B cells (TRF-B), and T cell-replacing factor for cytolytic cells (TRF-C), respectively. In contrast, the supernatant of clone Ly-1.14 contains only TCGF activity and does not promote antibody synthesis by B cells or differentiation of cytolytic cells from thymocytes. The results indicates that TCGF and TRF activities reside on independent, although perhaps related, molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号