首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nancy F. Smith 《Oecologia》2001,127(1):115-122
Spatial variation in parasitism is commonly observed in intermediate host populations. However, the factors that determine the causes of this variation remain unclear. Increasing evidence has suggested that spatial heterogeneity in parasitism among intermediate hosts may result from variation in recruitment processes initiated by definitive hosts. I studied the perching and habitat use patterns of wading birds, the definitive hosts in this system, and its consequences for the recruitment of parasites in snail intermediate hosts. Populations of the mangrove snail, Cerithidea scalariformis, collected from mangrove swamps on the east coast of central Florida are parasitized by a diverse community of trematode parasites. These parasites are transmitted from wading birds, which frequently perch on dead mangrove trees. I tested the hypothesis that mangrove perches act as transmission foci for trematode infections of C. scalariformis and that the spatial variation of parasitism frequently observed in this system is likely to emanate from the distribution of wading birds. On this fine spatial scale, definitive host behaviors, responding to a habitat variable, influenced the distribution, abundance and species composition of parasite recruitment to snails. This causal chain of events is supported by regressions between perch density, bird abundance, bird dropping density and ultimately parasite prevalence in snails. Variation between prevalence of parasites in free-ranging snails versus caged snails shows that while avian definitive hosts initiate spatial patterns of parasitism in snails through their perching behaviors, these patterns may be modified by the movement of snail hosts. Snail movement could disperse their associated parasite populations within the marsh, which may potentially homogenize or further increase parasite patchiness initiated by definitive hosts.  相似文献   

2.
In coevolutionary arms-races, reciprocal ecological interactions and their fitness impacts shape the course of phenotypic evolution. The classic example of avian host–brood parasite interactions selects for host recognition and rejection of increasingly mimetic foreign eggs. An essential component of perceptual mimicry is that parasitic eggs escape detection by host sensory systems, yet there is no direct evidence that the avian visual system covaries with parasitic egg recognition or mimicry. Here, we used eye size measurements collected from preserved museum specimens as a metric of the avian visual system for species involved in host–brood parasite interactions. We discovered that (i) hosts had smaller eyes compared with non-hosts, (ii) parasites had larger eyes compared with hosts before but not after phylogenetic corrections, perhaps owing to the limited number of independent evolutionary origins of obligate brood parasitism, (iii) egg rejection in hosts with non-mimetic parasitic eggs positively correlated with eye size, and (iv) eye size was positively associated with increased avian-perceived host–parasite eggshell similarity. These results imply that both host-use by parasites and anti-parasitic responses by hosts covary with a metric of the visual system across relevant bird species, providing comparative evidence for coevolutionary patterns of host and brood parasite sensory systems.  相似文献   

3.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

4.
Host age is one of the key factors in host–parasite relationships as it possibly affects infestation levels, parasite-induced mortality of a host, and parasite distribution among host individuals. We tested two alternative hypotheses about infestation pattern and survival under parasitism in relation to host age. The first hypothesis assumes that parasites are recruited faster than they die and, thus, suggests that adult hosts will show higher infestation levels than juveniles because the former have more time to accumulate parasites. The second hypothesis assumes that parasites die faster than they are recruited and, thus, suggests that adults will show lower infestation levels because of acquired immune response and/or the mortality of heavily infested juveniles and, thus, selection for less infested adults. As the negative effects of parasites on host are often intensity-dependent, we expected that the age-related differences in infestation may be translated to lower or higher survival under parasitism of adults, in the cases of the first and the second hypotheses, respectively. We manipulated ectoparasite numbers using insecticide and assessed the infestation pattern in adult and juvenile gerbils (Gerbillus andersoni) in the Negev Desert. We found only a partial support for age-dependent parasitism. No age-related differences in infestation and distribution among host individuals were found after adjusting the ectoparasite numbers to the host’s surface area. However, age-related differences in survival under parasitism were revealed. The survival probability of parasitized juveniles decreased in about 48% compared to unparasitized hosts while the survival probability of adults was not affected by ectoparasites. Our results suggest that the effect of host age on host–parasite dynamics may not explicitly be determined by age-dependent differences in ectoparasite recruitment or mortality processes but may also be affected by other host-related and parasite-related traits.  相似文献   

5.
Preferences by parasites for particular hosts may have important implications for the functioning of host–parasite systems, however, this parasitic life-history trait remains little studied. No detrimental effect of Louse Fly Crataerina pallida parasitism has been found on Common Swift Apus apus nestling hosts. Host selection choices may be mediating the effect this parasite has and account for this apparent avirulence. Two aspects of parasite host selection were studied at a breeding colony of Common Swifts during 2008; (1) intra-brood differences in C. pallida parasitism were studied to determine the influence of nestling rank, (2) differences in male and female C. pallida parasitism were investigated, as they may result in varying costs of parasitism to hosts. C. pallida populations were found to preferentially parasitize higher rather than lower ranking nestlings within broods of both two and three chicks. Greater proportions of females were seen upon nestlings than at the nest, and upon higher ranking than lower ranking nestlings within broods. These results indicate that host selection occurs and this may thus account for the lack of parasitic virulence reported within this host–parasite system.  相似文献   

6.
Duffy MA 《Oecologia》2007,153(2):453-460
As disease incidence increases worldwide, there is increased interest in determining the factors controlling parasitism in natural populations. Recently, several studies have suggested a possible role of predation in reducing parasitism, but this idea has received little experimental attention. Here, I present the results of an experiment in which I manipulated predation rate in large field enclosures to test the effects of predation on parasitism using a bluegill predator–Daphnia host–yeast parasite system. Based on previous work showing high bluegill sunfish selectivity for infected over uninfected Daphnia, I anticipated that predators would reduce infection levels. Contrary to expectations, predation did not reduce infection prevalence. Instead, there were large epidemics in all treatments, followed by reductions of host density to very low levels. As Daphnia density decreased, phytoplankton abundance increased and water clarity decreased, suggesting a parasite-driven trophic cascade. Overall, these results suggest that selective predation does not always reduce infection prevalence, and that parasites have the potential to drastically reduce host densities even in the presence of selective predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian‐haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host–parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host–parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian‐haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three‐dimensional spatial analyses of avian‐haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community‐level infections are primarily driven by host community composition.  相似文献   

8.
Garamszegi LZ  Avilés JM 《Oecologia》2005,143(1):167-177
Interspecific brood parasites may use the secondary sexual characters of the hosts to decide which species to parasitize. Hence, species with conspicuous and well-recognisable traits may have higher chances of becoming parasitised. Using North American birds and their frequent brood parasite, the brown-headed cowbird Molothrus ater, we tested the relationship between features of song and plumage coloration of hosts and the frequency of brood parasitism while controlling for several potentially confounding factors. Relying on two sets of analysis, we focused separately on the evolutionary view of the parasite and the host. From the cowbirds perspective, we found that males of heavily parasitized species posit songs with low syllable repertoire size, shorter inter-song interval and have brighter plumage. From the hosts perspective, a phylogenetic analysis revealed similar associations for features of song, but not for plumage characteristics that were unrelated to brood parasitism. These comparative findings may imply that brood parasites choose novel hosts based on heterospecific signals; and/or host species working against sexual selection escape from brood parasitism by evolving inconspicuous sexual signals. Although our data do not allow us to distinguish between these two evolutionary scenarios, our results suggest that selection factors mediating cowbird parasitism via host recognition by heterospecific signals may have an important role in the evolutionary relationship between brood parasites and their hosts.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

10.
The heterogeneity of parasitism risk among host individuals is a key factor for stabilizing or sustaining host–parasitoid interactions. Host maturation variability, or the variation in the maturation times among host individuals, is the simplest source of such heterogeneity, but it has often been neglected in previous theoretical studies. We developed a configuration individual-based model (cIBM) of host–parasitoid interaction to investigate to what degree of host maturation variability promotes the persistence of host–parasitoid interactions. We ran simulations with various degrees of host maturation variability for different lengths of unsusceptible period. The result showed that low host maturation variability could sustain host–parasitoid dynamics when the host-unsusceptible period was short. Conversely, high levels of variability could sustain host–parasitoid dynamics when the host-unsusceptible period was about half of the total larval period. This suggests that the balance between variability and unsusceptible period is important for the persistence of host–parasitoid interaction. We conclude that maturation variability is a factor that can contribute to the sustainment of host–parasitoid interactions.  相似文献   

11.
Environmental heterogeneity has been shown to have a profound effect on population dynamics and biological invasions, yet the effect of its spatial structure on the dynamics of disease invasion in a spatial host–parasite system has received little attention. Here we explore the effect of environment heterogeneity using the pair approximation and the stochastic spatially explicit simulation in which the lost patches are clustered in a fragmented landscape. The intensity of fragmentation is defined by the amount and spatial autocorrelation of the lost habitat. More fragmented landscape (high amount of habitat loss, low clustering of lost patches) was shown to be detrimental to the parasitic disease invasion and transmission, which implies that the potential of using artificial disturbances as a disease-control agency in biological conservation and management. Two components of the spatial heterogeneity (the amount and spatial autocorrelation of the lost habitat) formed a trade-off in determining the host–parasite dynamics. An extremely high degree of habitat loss was, counter-intuitively, harmful to the host. These results enrich our understanding of eco-epidemiological, host–parasite systems, and suggest the possibility of using the spatial arrangement of habitat patches as a conservation tool for guarding focal species against parasitic infection and transmission.  相似文献   

12.
The spatial structure of relatedness between individuals ina population can be crucial for social selection and evolution.Here we analyze a female alternative reproductive tactic, conspecificbrood parasitism, in relation to spatial relatedness among femalesin a Baltic Sea population of the common eider Somateria mollissima.The role of relatedness in brood parasitism is debated: somemodels predict parasite avoidance of related hosts, others predicthost–parasite relatedness. We estimate pairwise relatednessfrom protein fingerprinting of egg albumen in 156 nests, withpairwise nest distances ranging from 1 to 6 km. Relatednessincreases significantly from the longest distances to an averageof r 0.09 below 20 m. Brood parasitism is common, and averagepairwise relatedness between host and parasite is estimatedat 0.18–0.21. Parasites thus do not avoid relatives, andcombined with the findings of a similar study in another eiderpopulation, the results show that mean host–parasite relatednessis higher than that among close neighbors. High host–parasiterelatedness is therefore not an effect of natal philopatry alone;some other form of kin bias is also involved. Recognition andassociation between birth nest mates is a candidate mechanismfor further study.  相似文献   

13.
Robb T  Forbes MR 《Biology letters》2005,1(2):118-120
Hosts often differ in their degree of parasitism and their expression of resistance. Yet very little is known about how the availability (and allocation) of resources to parasites at pre-infective stages influences their success in initiating parasitism, or in inducing and succumbing to resistance from hosts. We studied a damselfly-mite association to address how experimental variation in the age of first contact with hosts (timing) influenced subsequent parasite fitness. We demonstrate that timing influenced the ability of larval mites to make the transition to parasitism, but was not associated with measures of physiological resistance by hosts. Timing presumably relates to the availability of resources remaining for individuals to exploit their hosts. More research is needed on the importance of such factors, from variation in host resistance and parasite success and, ultimately, to the numbers and distributions of parasites on hosts.  相似文献   

14.
Brood parasitic birds impose variable fitness costs upon their hosts by causing the partial or complete loss of the hosts' own brood. Growing evidence from multiple avian host-parasite taxa indicates that exposure of individual hosts to parasitism is not necessarily random and varies with habitat use, nest-site selection, age or other phenotypic attributes. For instance, nonrandom patterns of brood parasitism had similar evolutionary consequences to those of limited horizontal transmission of parasites and pathogens across space and time and altered the dynamics of both population productivity and co-evolutionary interactions of hosts and parasites. We report that brood parasitism status of hosts of brown-headed cowbirds Molothrus ater is also transmitted across generations in individually colour-banded female prothonotary warblers Protonotaria citrea. Warbler daughters were more likely to share their mothers' parasitism status when showing natal philopatry at the scale of habitat patch. Females never bred in their natal nestboxes but daughters of parasitized mothers had shorter natal dispersal distances than daughters of nonparasitized mothers. Daughters of parasitized mothers were more likely to use nestboxes that had been parasitized by cowbirds in both the previous and current years. Although difficult to document in avian systems, different propensities of vertical transmission of parasitism status within host lineages will have critical implications both for the evolution of parasite tolerance in hosts and, if found to be mediated by lineages of parasites themselves, for the difference in virulence between such extremes as the nestmate-tolerant and nestmate-eliminator strategies of different avian brood parasite species.  相似文献   

15.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

16.
Belden LK  Wojdak JM 《Oecologia》2011,166(4):1077-1086
Predators can have important impacts on host–parasite dynamics. For many directly transmitted parasites, predators can reduce transmission by removing the most heavily infected individuals from the population. Less is known about how predators might influence parasite dynamics in systems where the parasite relies on vectors or multiple host species to complete their life cycles. Digenetic trematodes are parasitic flatworms with complex life cycles typically involving three host species. They are common parasites in freshwater systems containing aquatic snails, which serve as obligate first intermediate hosts, and multiple trematode species use amphibians as second intermediate hosts. We experimentally examined the impact of predatory salamanders (Ambystoma jeffersonianum) and trematode parasites (Echinostoma trivolvis and Ribeiroia ondatrae) on short-term survival of wood frog tadpoles (Rana sylvatica) in 150-L outdoor pools. Two trematode species were used in experiments because field surveys indicated the presence of both species at our primary study site. Parasites and predators both significantly reduced tadpole survival in outdoor pools; after 6 days, tadpole survival was reduced from 100% in control pools to a mean of 46% in pools containing just parasites and a mean of 49% in pools containing just predators. In pools containing both infected snails and predators, tadpole survival was further reduced to a mean of 5%, a clear risk-enhancement or synergism. These dramatic results suggest that predators may alter transmission dynamics of trematodes in natural systems, and that a complete understanding of host–parasite interactions requires studying these interactions within the ecological framework of community interactions.  相似文献   

17.
The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host-parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future.  相似文献   

18.
Phenotypic differences between infected and non-infected hosts are often assumed to be the consequence of parasite infection. However, pre-existing differences in hosts’ phenotypes may promote differential susceptibility to infection. The phenotypic variability observed within the host population may therefore be a cause rather than a consequence of infection. In this study, we aimed at disentangling the causes and the consequences of parasite infection by calculating the value of a phenotypic trait (i.e., the growth rate) of the hosts both before and after infection occurred. That procedure was applied to two natural systems of host–parasite interactions. In the first system, the infection level of an ectoparasite (Tracheliastes polycolpus) decreases the growth rate of its fish host (the rostrum dace, Leuciscus leuciscus). Reciprocally, this same phenotypic trait before infection modulated the future level of host sensitivity to the direct pathogenic effect of the parasite, namely the level of fin degradation. In the second model, causes and consequences linked the growth rate of the fish host (the rainbow smelt, Osmerus mordax) and the level of endoparasite infection (Proteocephalus tetrastomus). Indeed, the host’s growth rate before infection determined the number of parasites later in life, and the parasite biovolume then decreased the host’s growth rate of heavily infected hosts. We demonstrated that reciprocal effects between host phenotypes and parasite infection can occur simultaneously in the wild, and that the observed variation in the host phenotype population was not necessarily a consequence of parasite infection. Disentangling the causality of host–parasite interactions should contribute substantially to evaluating the role of parasites in ecological and evolutionary processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We investigated potential changes in the metazoan endoparasite fauna in the northern Wadden Sea during the past 4 decades by compiling published studies, reports and original data. During the time considered, the parasite fauna has remained basically the same. Only a few changes in parasite species presence occurred that resulted from changes in host distribution and abundance. The introduction of potential host species had little effect on the parasite community because no alien parasites were concomitantly introduced and the native parasites show low prevalence and intensity in these novel hosts. Eutrophication and effects of phased-out hunting may not have had clear bottom–up or top–down effects on the parasite community because of various confounding factors. Parasites depending on several host species may only be subject to strong population changes if all hosts are affected in a unidirectional way. This, however, is rather unlikely to happen in a coastal ecosystem subject to multiple pressures. Hence, parasites appear to be a relatively conservative component of the northern Wadden Sea.  相似文献   

20.
Microbial microcosm experiments with bacteria and their viral parasites allow us to observe host–parasite coevolution in action. Laboratory populations of microbes evolve rapidly, thanks to their short generation times and huge population sizes. By taking advantage of a “living fossil record” stored in the laboratory freezer, we can directly compare the fitness of hosts and parasites with their actual evolutionary ancestors. Such experiments demonstrate that host–parasite coevolution is an important evolutionary force and a cause of strong and divergent natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号