首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirano T  Imai H  Shichida Y 《Biochemistry》2003,42(43):12700-12707
The thermal reactions of the bathoproduct of the long wavelength sensitive visual pigment iodopsin were investigated under various anionic and environmental conditions, to get an insight into the mechanism leading to the unusual thermal isomerization of the retinal chromophore from the trans to the 11-cis form at very low temperatures (-160 degrees C). The all-trans chromophore of the bathoiodopsin produced from iodopsin in the presence of chloride thermally reverted to the 11-cis form, while in the presence of nitrate it kept its all-trans configuration upon warming. Different protein environments, either in a detergent or in phosphatidylcholine (PC) liposomes, did not change the reaction characteristics of the bathoiodopsins under the two anionic conditions. However, reaction characteristics of bathoiodopsins produced in the absence of small anions were dependent on the environment. The trans-to-cis isomerization occurred upon warming of bathoiodopsin in the presence of detergent but not in liposomes. Spectral measurements revealed that iodopsin in the absence of small anions is a mixture of two spectrally distinct forms that exhibit absorption maxima and reaction characteristics similar to those of chloride-bound and nitrate-bound iodopsins, respectively. Thus, iodopsin exhibits two conformational states, each of which is stabilized by the binding of chloride and nitrate, respectively.  相似文献   

2.
Hirano T  Imai H  Kandori H  Shichida Y 《Biochemistry》2001,40(5):1385-1392
To investigate the chloride effect on the spectral properties of iodopsin, we have prepared an anion-free iodopsin (iodopsin.free) by extensive dialysis of an iodopsin sample against a buffer containing no chloride, and visible and infrared difference spectra between iodopsin.free and its photoproduct at 77 K were recorded. The absorption maximum of iodopsin.free in L-alpha-phosphatidylcholine liposomes was 528 nm, which was almost identical with that of the nitrate-bound form of iodopsin (526 nm, iodopsin.NO(3)), but 43 nm blue-shifted from that of the chloride-bound form of iodopsin (iodopsin.Cl). The iod/batho visible difference spectrum obtained from iodopsin.free was similar in shape to that from iodopsin.NO(3), but not to that from iodopsin.Cl. FTIR spectroscopy revealed that the chromophore vibrational bands and the peptide bonds of the original state in iodopsin.free were identical with those in iodopsin.NO(3) and were also similar to those in iodopsin.Cl except for the ethylenic vibrations of the chromophore. In contrast, those of the batho state in iodopsin.free were similar to those in iodopsin.NO(3) but considerably different from those in iodopsin.Cl. These results suggested that the binding of chloride but not nitrate induces a conformational change in the protein and that the chloride binding site is situated in a position where it directly interacts with the chromophore when the chromophore is photoisomerized. FTIR spectroscopy also revealed that one of the four water bands observed in the batho/iod spectrum of iodospin.Cl is absent in the spectra of iodopsin.free and iodopsin.NO(3). Thus, in contrast to nitrate, a lyotropic anion, chloride would bind to the binding site with water molecule(s) which could form a hydrogen-bonding network with amino acid residue(s) near the chromophore, thereby resulting in the red shift of the absorption maximum of iodopsin.  相似文献   

3.
Spectroscopic properties of chicken iodopsin were investigated in correlation with the concentration of chloride in digitonin extracts. When chloride in the extract was depleted by extensive dialysis, chloride-depleted iodopsin (absorption maximum, 512 nm) was formed. It was converted to chloride-bound iodopsin (absorption maximum, 562 nm) by the addition of chloride in the extract. There existed an equilibrium between two forms of iodopsin with a dissociation constant of 0.8 mM chloride. The chromophore-transfer reaction from iodopsin to scotopsin or B-photopsin, the protein moiety of chicken rhodopsin or chicken blue-sensitive cone pigment, respectively, in digitonin extract was also investigated in correlation with the concentrations of chloride, other monovalent and divalent anions, and detergent. The chromophore of chloride-depleted iodopsin was easily transferred to scotopsin in the extract, resulting in formation of rhodopsin. On the other hand, chloride-bound iodopsin was fairly stable even in the presence of scotopsin, indicating that the reaction is inhibited by binding of chloride to iodopsin. The chromophore-transfer reaction to B-photopsin was also observed from chloride-depleted iodopsin but not from chloride-bound iodopsin. The reaction was observable in the 10% digitonin extract as well as in the 2% digitonin extract. The reaction was also observed when 25 mM Na2SO4 was present in the mixture instead of NaCl, but was not when 67 mM NaNO3 was present. All these facts suggest that the chloride binding site of iodopsin does not accept a divalent anion such as SO4(2+), but does accept a monovalent anion such as Cl- or NO3-, which causes inhibition of the chromophore transfer.  相似文献   

4.
To investigate the chromophore structures of iodopsin and its low-temperature photoproducts, we have assigned their vibrational bands in the Fourier transform infrared (FTIR) spectra using iodopsin samples that were reconstituted with a series of (13)C- and deuterium-labeled retinals. The analyses of the vibrational bands in the fingerprint and hydrogen-out-of-plane (HOOP) regions indicated that the structure of the chromophores in the iodopsin system differs near their centers from those in the rhodopsin system. Compared to rhodopsin, the chromophore of the batho intermediate of iodopsin is twisted in the C(12) to C(14) regions but is more planar around C(11) region. The large amount of twisting was reduced by removing the chloride ion from the iodopsin, suggesting that this twisting hinders the relaxation of the torsion near C(11) necessary for the transition to the lumi intermediate and thus results in the thermal reversion of the batho intermediate back to the iodopsin. From the analyses of the C=NH and C=ND stretching bands, we conclude that the displacement of the Schiff base region upon photoisomerization of the chromophore is restricted, as is the case for rhodopsin. These results indicated that iodopsin's chromophore has a unique structure near its center and that this difference is enhanced by the binding of chloride nearby.  相似文献   

5.
Wavelength regulation in iodopsin, a cone pigment.   总被引:3,自引:2,他引:1       下载免费PDF全文
The opsin shift, the difference in wavenumber between the absorption peak of a visual pigment and the protonated Schiff base of the chromophore, represents the influence of the opsin binding site on the chromophore. The opsin shift for the chicken cone pigment iodopsin is much larger than that for rhodopsin. To understand the origin of this opsin shift and the mechanism of wavelength regulation in iodopsin, a series of synthetic 9-cis and 11-cis dehydro- and dihydro-retinals was used to regenerate iodopsin-based pigments. The opsin shifts of these pigments are quite similar to those found in bacteriorhodopsin-based artificial pigments. On the basis of these studies, a tentative model of wavelength regulation in iodopsin is proposed.  相似文献   

6.
Resonance Raman analysis of the Pr and Pfr forms of phytochrome   总被引:4,自引:0,他引:4  
S P Fodor  J C Lagarias  R A Mathies 《Biochemistry》1990,29(50):11141-11146
Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.  相似文献   

7.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

9.
Iwata T  Nozaki D  Sato Y  Sato K  Nishina Y  Shiga K  Tokutomi S  Kandori H 《Biochemistry》2006,45(51):15384-15391
Phototropin, a blue-light photoreceptor in plants, has two FMN-binding domains named LOV1 and LOV2. We previously observed temperature-dependent FTIR spectral changes in the C=O stretching region (amide-I vibrational region of the peptide backbone) for the LOV2 domain of Adiantum phytochrome3 (phy3-LOV2), suggesting progressive structural changes in the protein moiety (Iwata, T., Nozaki, D., Tokutomi, S., Kagawa, T., Wada, M., and Kandori, H. (2003) Biochemistry 42, 8183-8191). Because FMN also possesses two C=O groups, in this article, we aimed at assigning C=O stretching vibrations of the FMN and protein by using 13C-labeling. We assigned the C(4)=O and C(2)=O stretching vibrations of FMN by using [4,10a-13C2] and [2-13C] FMNs, respectively, whereas C=O stretching vibrations of amide-I were assigned by using 13C-labeling of protein. We found that both C(4)=O and C(2)=O stretching vibrations shift to higher frequencies upon the formation of S390 at 77-295 K, suggesting that the hydrogen bonds of the C=O groups are weakened by adduct formation. Adduct formation presumably relocates the FMN chromophore apart from its hydrogen-bonding donors. Temperature-dependent amide-I bands are unequivocally assigned by separating the chromophore bands. The hydrogen bond of the peptide backbone in the loop region is weakened upon S390 formation at low temperatures, while being strengthened at room temperature. The hydrogen bond of the peptide backbone in the alpha-helix is weakened regardless of temperature. On the other hand, structural perturbation of the beta-sheet is observed only at room temperature, where the hydrogen bond is strengthened. Light-signal transduction by phy3-LOV2 must be achieved by the progressive protein structural changes initiated by the adduct formation of the FMN.  相似文献   

10.
Resonance Raman vibrational spectra of the retinal chromophore in bathorhodopsin have been obtained after regenerating bovine visual pigments with an extensive series of 13C- and deuterium-labeled retinals. A low-temperature spinning cell technique was used to produce high-quality bathorhodopsin spectra exhibiting resolved hydrogen out-of-plane wagging vibrations at 838, 850, 858, 875, and 921 cm-1. The isotopic shifts and a normal coordinate analysis permit the assignment of these lines to the HC7 = C8H Bg, C14H, C12H, C10H, and C11H hydrogen out-of-plane wagging modes, respectively. The coupling constant between the C11H and C12H wags as well as the C12H wag force constant are unusually low compared to those of retinal model compounds. This quantitatively confirms the lack of coupling between the C11H and C12H wags and the low C12H wag vibrational frequency noted earlier by Eyring et al. [(1982) Biochemistry 21, 384]. The force constants for the C10H and C14H wags are also significantly below the values observed in model compounds. We suggest that the perturbed hydrogen out-of-plane wagging and C-C stretching force constants for the C10-C11 = C12-C13 region of the chromophore in bathorhodopsin result from electrostatic interactions with a charged protein residue. This interaction may also contribute to the 33 kcal/mol energy storage in bathorhodopsin.  相似文献   

11.
The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an efficient light-energy convertor. Important unresolved questions involve the mechanism by which the protein catalyzes deprotonation of the L550 intermediate and the mechanism of the thermal conversion of M412 back to BR568. Also, it has been shown that under conditions of high ionic strength and/or low light intensity two protons are pumped per photocycle (Kuschmitz & Hess, 1981). How might this be accomplished?(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The photochemical and the subsequent thermal behaviors of iodopsin (Cl(-)-bound form) and N-iodopsin (iodopsin whose Cl- was replaced by NO3-) in CHAPS-phosphatidylcholine (PC) were studied by low-temperature spectrophotometry. Irradiation of the iodopsin preparation at -185 degrees C produced a photo-steady-state mixture composed of iodopsin, bathoiodopsin, and isoiodopsin. Bathoiodopsin was thermally reverted to the original iodopsin. These results were almost the same as those reported previously [Yoshizawa, T., & Wald, G. (1967) Nature 214, 566-571] in which iodopsin was extracted with 2% digitonin. Therefore, photochemical and subsequent thermal behaviors of iodopsin were independent of the detergent to solubilize iodopsin. Irradiation of N-iodopsin at -185 degrees C produced the similar photo-steady-state mixture. However, N-bathoiodopsin was thermally converted to the next intermediate, presumably N-lumiiodopsin. These results suggest that the batho-lumi transition of iodopsin at low temperature is likely to be inhibited by the Cl- bound to the protein moiety of iodopsin, while at room temperature the Cl- bound to iodopsin could be released on the conversion process of batho- to lumiiodopsin.  相似文献   

13.
Fourier transform infrared difference spectroscopy of bacteriorhodopsin at low temperature reveals at least two stable forms of bacteriorhodopsin570 and the K photoproduct. In the case of bacteriorhodopsin570, warming from 81 to 135 K causes a reduction in absorption of several chromophore vibrations, but not the C = N stretching mode. These changes are consistent with a reorientation of the chromophore which leaves the angle of the C = N bond unchanged relative to the membrane plane. In the case of the K intermediate, two different forms can be isolated at 135 K on the basis of wavelength-dependent photoalteration. One form is identical to the low temperature K630 species, whereas a second blue-shifted form is present only above 135 K. This new form exhibits a 985 cm-1 peak in the hydrogen-out-of-plane bending region, which is similar to a reported room-temperature resonance Raman spectrum of K. Temperature-dependent changes in the conformation of the protein involving possible alterations in peptide hydrogen bonding are also detected.  相似文献   

14.
Yuan C  Kuwata O  Liang J  Misra S  Balashov SP  Ebrey TG 《Biochemistry》1999,38(14):4649-4654
The binding of chloride is known to shift the absorption spectrum of most long-wavelength-absorbing cone-type visual pigments roughly 30 nm to the red. We determined that the chloride binding constant for this color shift in the gecko P521 visual pigment is 0.4 mM at pH 6.0. We found an additional effect of chloride on the P521 pigment: the apparent pKa of the Schiff base in P521 is greatly increased as the chloride concentration is increased. The apparent Schiff base pKa shifts from 8.4 for the chloride-free form to >10.4 for the chloride-bound form. We show that this shift is due to chloride binding to the pigment, not to the screening of the membrane surface charges by chloride ions. We also found that at high pH, the absorption maximum of the chloride-free pigment shifts from 495 to 475 nm. We suggest that the chloride-dependent shift of the apparent Schiff base pKa is due to the deprotonation of a residue in the chloride binding site with a pKa of ca. 8.5, roughly that of the Schiff base in the absence of chloride. The deprotonation of this site results in the formation of the 475 nm pigment and a 100-fold decrease in the pigment's ability to bind chloride. Increasing the concentration of chloride results in the stabilization of the protonated state of this residue in the chloride binding site and thus increased chloride binding with an accompanying increase in the Schiff base pK.  相似文献   

15.
Bovine rhodopsin was bleached and regenerated with 7,9-dicis-retinal to form 7,9-dicis-rhodopsin, which was purified on a concanavalin A affinity column. The absorption maximum of the 7,9-dicis pigment is 453 nm, giving an opsin shift of 1600 cm-1 compared to 2500 cm-1 for 11-cis-rhodopsin and 2400 cm-1 for 9-cis-rhodopsin. Rapid-flow resonance Raman spectra have been obtained of 7,9-dicis-rhodopsin in H2O and D2O at room temperature. The shift of the 1654-cm-1 C = N stretch to 1627 cm-1 in D2O demonstrates that the Schiff base nitrogen is protonated. The absence of any shift in the 1201-cm-1 mode, which is assigned as the C14-C15 stretch, or of any other C-C stretching modes in D2O indicates that the Schiff base C = N configuration is trans (anti). Assuming that the cyclohexenyl ring binds with the same orientation in 7,9-dicis-, 9-cis-, and 11-cis-rhodopsins, the presence of two cis bonds requires that the N-H bond of the 7,9-dicis chromophore points in the opposite direction from that in the 9-cis or 11-cis pigment. However, the Schiff base C = NH+ stretching frequency and its D2O shift in 7,9-dicis-rhodopsin are very similar to those in 11-cis- and 9-cis-rhodopsin, indicating that the Schiff base electrostatic/hydrogen-bonding environments are effectively the same. The C = N trans (anti) Schiff base geometry of 7,9-dicis-rhodopsin and the insensitivity of its Schiff base vibrational properties to orientation are rationalized by examining the binding site specificity with molecular modeling.  相似文献   

16.
Structural studies of retinochrome, and its photoproduct, lumiretinochrome, were done by Fourier transform infrared difference spectroscopy. The absorption bands in the carbonyl stretching region which shift in D2O show the changes in the protein part during the photoreaction. Strong absorption bands in the finger-print region show that the all-trans-retinal chromophore in retinochrome isomerizes to the 11-cis-retinal chromophore in lumiretinochrome upon illumination with yellow-green light at 83K.  相似文献   

17.
Shibata M  Muneda N  Sasaki T  Shimono K  Kamo N  Demura M  Kandori H 《Biochemistry》2005,44(37):12279-12286
Halorhodopsin is a light-driven chloride ion pump. Chloride ion is bound in the Schiff base region of the retinal chromophore, and unidirectional chloride transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. In this article, we study hydrogen-bonding alterations of the Schiff base and water molecules in halorhodopsin of Natronobacterium pharaonis (pHR) by assigning their N-D and O-D stretching vibrations in D(2)O, respectively. Highly accurate low-temperature Fourier transform infrared spectroscopy revealed that hydrogen bonds of the Schiff base and water molecules are weak in the unphotolyzed state, whereas they are strengthened upon retinal photoisomerization. Halide dependence of the stretching vibrations enabled us to conclude that the Schiff base forms a direct hydrogen bond with Cl(-) only in the K intermediate. Hydrogen bond of the Schiff base is further strengthened in the L(1) intermediate, whereas the halide dependence revealed that the acceptor is not Cl(-), but presumably a water molecule. Thus, it is concluded that the hydrogen-bonding interaction between the Schiff base and Cl(-) is not a driving force of the motion of Cl(-). Rather, the removal of its hydrogen bonds with the Schiff base and water(s) makes the environment around Cl(-) less polar in the L(1) intermediate, which presumably drives the motion of Cl(-) from its binding site to the cytoplasmic domain.  相似文献   

18.
Effects of anion binding on the deprotonation reactions of halorhodopsin   总被引:3,自引:0,他引:3  
The retinal Schiff base of halorhodopsin deprotonates with a pKa of 7.4 in 0.5 M Na2SO4 in the dark. In the presence of various anions, such as chloride or nitrate, etc., the pKa is raised by up to 1.5 units. Analysis of the dependency of the pKa on anion concentration favors the model in which the anions do not bind to the positively charged Schiff base nitrogen, but to a site near it, and exert their effect on the pKa by direct (perhaps electrostatic) interaction. Adding nitrate, or one of several other anions, causes also a small blueshift in the visible absorption band of the chromophore. These effects on the pKa and the absorption band define an anion binding site in halorhodopsin, termed Site I. Chloride and bromide apparently bind in addition to another site, which is associated with a small red-shift of the absorption band and changes in the photocycle. This other anion binding site is termed Site II. Illumination of halorhodopsin samples results in the deprotonation of the Schiff base with a much lowered pKa, but at very low rates probably determined by the generation of a deprotonating photointermediate. Binding of Site I anions increases the pKa of deprotonation in the light also. The similarity of the responses of the apparent pKa in the dark and in the light to anion concentration suggests that anion binding to Site I influences deprotonation of the Schiff base similarly in the photointermediate and in the parent halorhodopsin molecule.  相似文献   

19.
Fourier transform infrared difference spectra have been obtained for the bR----K and bR----M photoreactions of bacteriorhodopsin mutants with Phe replacements for Trp residues 10, 12, 80, 86, 138, 182, and 189 and Cys replacements for Trp residues 137 and 138. None of the tryptophan mutations caused a significant shift in the retinylidene C = C or C-C stretching frequencies of the visible absorption maximum of the chromophore, it is concluded that none of the tryptophan residues are essential for forming a normal bR570 chromophore. However, a 742-cm-1 negative peak attributed previously to the perturbation of a tryptophan residue during the bR----K photoreaction was found to be absent in the bR----K and bR----M difference spectra of the Trp-86 mutant. On this basis, we conclude that the structure or environment of Trp-86 is altered during the bR----K photoreaction. All of the other Trp----Phe mutants exhibited this band, although its frequency was altered in the Trp-189----Phe mutant. In addition, the Trp-182----Phe mutant exhibited much reduced formation of normal photoproducts relative to the other mutants, as well as peaks indicative of the presence of additional chromophore conformations. A model of bR is discussed in which Trp-86, Trp-182, and Trp-189 form part of a retinal binding pocket. One likely function of these tryptophan groups is to provide the structural constraints needed to prevent chromophore photoisomerization other than at the C13 = C14 double bond.  相似文献   

20.
Absorption spectra of single outer segments of the frog Rana temporaria photoreceptors were registered. Effects of nitrate and chloride ions on spectral properties of cone and rod pigments were compared. These pigments proved to differ in structure of the native photoreceptor membrane and, therefore, in effect of hydrophile environment on the chromophore centrum. Substitution of chloride by nitrate ions led to the hypochromic shift of the cone absorption spectrum (20-25 nm) but does not affect the spectrum on case of rod pigment. The ionochromic behaviour of cone pigments resembles that of the light-sensitive halobacterium protein halorhodopsin, in native membrane. We suppose that the effect of anions on the chromophore centrum may be the cause of bathochromic shifts of absorption spectra of longwave-length retinal-containing pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号