首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.  相似文献   

2.
Several barophilic and barotolerant bacteria were isolated from deep-sea mud samples of Suruga Bay (2485 m depth), the Ryukyu Trench (5110 m depth), and the Japan Trench (land-side 6356 m, and sea-side 6269 m depth, respectivelys. The barophilic bacteria, strains DB5501, DB6101, DB6705 and DB6906, were albe to grow better under high hydrostatic pressures than under atmospheric pressure (0.1 megapascals; MPa). The optimal growth pressures for the barophilic bacteria were approximately 50 MPa at 10°C. The barotolerant strains DSK1 and DSS12 were determined to be psychrophilic, and had optimal growth temperatures of 10°C and 8°C, respectively. The degree of barophily and barotolerance was shown to be very dependent on temperature. For example, at 4°C the barophilic strains were indistinguishable from barotolerant bacteria, whereas at 15°C the barotolerant strains behaved more like the barophilic strains. Based on sequence analysis of 16S ribosomal DNA, all of the strains included in this study belong to the gamma subgroup of the Proteobacteria. Phylogenetic relations between the isolated strains and the known gamma subgroup bacteria suggested that the isolated strains belong to a new sub-branch of this group.  相似文献   

3.
A continuous culture system that allows bacteria to be grown in steady-state populations under pressures of up to 700 atm (71 MPa) was constructed and tested. With readily available or slightly modified high-pressure chromatography equipment, a continuous flow of sterile medium is pressurized and passed through a 500-ml nylon-coated titanium reactor at flow rates of 0.01 to 10 ml min(sup-1). The pressure in the reactor is controlled by a backpressure regulator with greater than 1% accuracy. In test experiments, a culture of a psychro- and barophilic marine isolate from a depth of 4,900 m (strain F1-A, identified as a Shewanella sp.) was grown at 1, 300, and 450 atm (0.1, 30.4, and 40.5 MPa) and dilution rates of 60 and 90% of the organism's maximum growth rate (determined at 1 atm) in the required complex medium at levels of 3.3 and 0.33 mg of dissolved organic carbon per liter in the reservoir. Growth limitation by carbon was assured by an appropriate C/N/P ratio of the medium. The data indicate that barophilic growth characteristics in steady-state cultures of this psychro- and barophilic deep-sea isolate were positively affected by a decreasing growth rate at the higher of two substrate concentrations in the reservoir. After a 10-fold lowering of the substrate concentration, the effect was reversed. Under these conditions, the cell viability increased significantly, especially at the higher of the two pressures tested. The basic design of the system can principally also be used for growth studies on hyperthermophilic bacteria and archaea.  相似文献   

4.
Isolations of pressure-adapted deep sea bacteria from depths of 1,400 to 5,100 m resulted in a variety of psychrophilic barotolerant and barophilic strains. Growth rates determined at different pressures indicated a gradual transition between the two types of pressure-adapted isolates. The presence of barotolerant bacteria in deep water, sustained by sinking particulate matter, causes the nonbarophilic response of natural populations, i.e., increased growth after decompression. With increasing pressure-adaptation in barophilic isolates the maximum growth rates at optimum pressures decrease. Thus, the observed general slow-down of microbial activity in the deep sea takes effect regardless of the common occurrence of psychrophilic and barophilic bacteria. The highest degree of barophilism was observed in isolates from nutrient-rich habitats such as intestinal tracts of deep sea animals or decaying carcasses. Detailed studies with an isolate, growing barophilically on a complex as well as a single-carbon-source medium, showed that (1) culturing at pressures lower than optimal for growth resulted in the formation of cell filaments, (2) growth was unaffected by repeated compression/decompression cycles and (3) no perceptible differences in the distribution of radiolabeled carbon from an amino acid mixture occurred in cells grown at, below and above the pressure optimal for growth.Dedicated to Professor Dr. Hans G. Schlegel on the occasion of his 60th birthday in recognition of his broad microbiological interests and in special appreciation of his lasting support for the Marine Microbiology Course at the Stazione Zoologica (Naples, Italy) now for almost 25 years Non-standard abbreviations. The traditional use of atm as a unit of pressure (=10 m of water column, =1.013 bar, =101.3 kN/m2) is retained here in view of the important relation between water depth and hydrostatic pressure in the present study. Due to the compression of seawater and the geographic variability of gravity, there is a progressive deviation of the actual pressure with depth amounting to +4.9 atm at 5,000 m and a latitude of 30°. EPC, cell counts obtained by epifluorescence microscopy. PY, peptone yeast extract medium  相似文献   

5.
Microbes are often discussed in terms of dichotomies such as copiotrophic/oligotrophic and fast/slow-growing microbes, defined using the characterisation of microbial growth in isolated cultures. The dichotomies are usually qualitative and/or study-specific, sometimes precluding clear-cut results interpretation. We can unravel microbial dichotomies as life history strategies by combining ecology theory with Monod curves, a laboratory mathematical tool of bacterial physiology that relates the specific growth rate of a microbe with the concentration of a limiting nutrient. Fitting of Monod curves provides quantities that directly correspond to key parameters in ecological theories addressing species coexistence and diversity, such as r/K selection theory, resource competition and community structure theory and the CSR triangle of life strategies. The resulting model allows us to reconcile the copiotrophic/oligotrophic and fast/slow-growing dichotomies as different subsamples of a life history strategy triangle that also includes r/K strategists. We also used the number of known carbon sources together with community structure theory to partially explain the diversity of heterotrophic microbes observed in metagenomics experiments. In sum, we propose a theoretical framework for the study of natural microbial communities that unifies several existing proposals. Its application would require the integration of metagenomics, metametabolomics, Monod curves and carbon source data.  相似文献   

6.
Molecular analyses of the sediment of the 11000-m deep Mariana Trench   总被引:10,自引:1,他引:10  
We have obtained sediment samples from the world's deepest sea-bottom, the Mariana Trench challenger point at a depth of 10 898 m, using the new unmanned submersible Kaiko. DNA was extracted from the sediment, and DNA fragments encoding several prokaryotic ribosomal RNA small-subunit sequences and pressure-regulated gene clusters, typically identifed in deep-sea adapted bacteria, were amplifed by the polymerase chain reaction. From the sequencing results, at least two kinds of bacterial 16S rRNAs closely related to those of the genus Pseudomonas and deep-sea adapted marine bacteria, and archaeal 16S rRNAs related to that of a planktonic marine archaeon were identifed. The sequences of the amplifed pressure-regulated clusters were more similar to those of deep-sea barophilic bacteria than those of barotolerant bacteria. These results suggest that deep-sea adapted barophilic bacteria, planktonic marine archaea, and some of the world's most widespread bacteria (the genus Pseudomonas) coexist on the world's deepest sea-bottom. Received: October 10, 1996 / Accepted: March 3, 1997  相似文献   

7.
Two marine bacteria, an Acinetobacter sp. (strain GO1) and a vibrio sp. (strain G1), were isolated by extinction dilution and maintained in natural seawater supplemented with nitrogen, phosphorus, and glucose at 0.01 and 10 mg of glucose carbon per liter above ambient monosaccharide concentrations, respectively. After 3 days in unsupplemented natural seawater, growth in batch culture with glucose supplements was determined by changes in cell numbers and glucose concentration. The exponential growth of the Acinetobacter strain with added glucose was indistinguishable from that in natural seawater alone, whereas that of the Vibrio strain was more rapid in the presence of glucose supplements, suggesting that the Acinetobacter strain preferred the natural organic matter in seawater as a carbon source. The ultrastructure for both isolates was unaffected by glucose supplements during exponential growth, but there were marked changes in stationary-phase cells. The Vibrio strain formed polyphosphate at 10 mg of glucose carbon per liter, whereas poly-beta-hydroxybutyrate formation occurred at 100 mg and became excessive at 1,000 mg, disrupting the cells. In contrast, the Acinetobacter strain elongated at 100 and 1,000 mg of glucose carbon per liter but failed to show poly-beta-hydroxybutyrate formation. The diversity of responses shown here would not have been detected with a single concentration of substrate, often used in the literature to characterize both pure and natural populations of marine bacteria.  相似文献   

8.
Cyclic AMP levels in glucose and succinate-limited and ammonia-limited glucose-containing continuous cultures of Escherichia coli were measured at different bacterial growth rates. Intracellular cyclic AMP concentrations were fairly constant (about 5 micrometer) at all dilution rates used when glucose was limiting. In ammonia-limited glucose cultures the cyclic AMP content was much lower (about 0.3 micrometer). In succinate-limited cultures cyclic AMP levels fell from 2.7 to 0.8 micrometer as dilution rate increased from 0.05 to 0.4 h-1. The effects of cyclic AMP on respiratory and carbon catabolic enzyme levels were studied. There was no indication of a direct cyclic AMP involvement in the regulation of these cellular functions. It seems more likely that the variations in enzyme levels observed resulted from variation of the specific growth rate of cultures.  相似文献   

9.
Cyclic AMP levels in glucose and succinate-fluid and ammonia-limited glucose-containing continuous cultures of Escherichia coli were measured at different bacterial growth rates. Intracellular cyclic AMP concentrations were fairly constant (about 5 μM) at all dilution rates used when glucose was limiting. In ammonia-limited glucose cultures the cyclic AMP content was much lower (about 0.3 μM). In succinate-limited cultures cyclic AMP levels fell from 2.7 to 0.8 μM as dilution rate increased from 0.05 to 0.4 h?1.The effects of cyclic AMP on respiratory and carbon catabolic enzyme levels were studied. There was no indication of a direct cyclic AMP involvement in the regulation of these cellular functions. It seems more likely that the variations in enzyme levles observed resulted from variation of the specific growth rate of cultures.  相似文献   

10.
A positive pressure effect (1.4 to 3.3×) on the binding of Mn2+ by a natural population of bacteria in a deep-sea hydrothermal plume was discovered over the intermediate pressure range of 1 to 200 atm (1 to 200 bars; ca. 1.01 × 102 to 2.03 × 104 kPa). The data suggest Mn2+ binding is functionally barophilic rather than simply barotolerant.  相似文献   

11.
Two marine bacteria, an Acinetobacter sp. (strain GO1) and a vibrio sp. (strain G1), were isolated by extinction dilution and maintained in natural seawater supplemented with nitrogen, phosphorus, and glucose at 0.01 and 10 mg of glucose carbon per liter above ambient monosaccharide concentrations, respectively. After 3 days in unsupplemented natural seawater, growth in batch culture with glucose supplements was determined by changes in cell numbers and glucose concentration. The exponential growth of the Acinetobacter strain with added glucose was indistinguishable from that in natural seawater alone, whereas that of the Vibrio strain was more rapid in the presence of glucose supplements, suggesting that the Acinetobacter strain preferred the natural organic matter in seawater as a carbon source. The ultrastructure for both isolates was unaffected by glucose supplements during exponential growth, but there were marked changes in stationary-phase cells. The Vibrio strain formed polyphosphate at 10 mg of glucose carbon per liter, whereas poly-beta-hydroxybutyrate formation occurred at 100 mg and became excessive at 1,000 mg, disrupting the cells. In contrast, the Acinetobacter strain elongated at 100 and 1,000 mg of glucose carbon per liter but failed to show poly-beta-hydroxybutyrate formation. The diversity of responses shown here would not have been detected with a single concentration of substrate, often used in the literature to characterize both pure and natural populations of marine bacteria.  相似文献   

12.
The rates of bacterial growth in nature are often restricted by low concentrations of oxygen or carbon substrates. In the present study the metabolic properties of 24 isolates that had been isolated using various concentrations of 3-chlorobenzoate, benzoate and oxygen as well as using continuous culture at high and low growth rates were determined to investigate the effects of these parameters on the metabolism of monoaromatic compounds. Bacteria were enriched from different sampling sites and subsequently isolated. In batch culture this was done both under low oxygen (2% O(2)) and air-saturated concentrations. Chemostat enrichments were performed under either oxygen or 3-chlorobenzoate limiting conditions. Bacteria metabolizing aromatics with gentisate or protocatechuate as intermediates (gp bacteria) as well as bacteria metabolizing aromatic compounds via catechols (cat bacteria) were isolated from batch cultures when either benzoate or 3CBA were used as C sources, regardless of the enrichment conditions applied. In contrast, enrichments performed in chemostats at low dilution rates resulted in gp-type organisms only, whereas at high dilution rates cat-type organisms were enriched, irrespective of the oxygen and 3-chlorobenzoate concentration used during enrichment. It is noteworthy that the gp-type of bacteria possessed relatively low μ(max) values on 3CBA and benzoate along with relatively high substrate and oxygen affinities for these compounds. This is in contrast with cat-type of bacteria, which seemed to be characterized by high maximum specific growth rates on the aromatic substrates and relatively high apparent half saturation constants. In contrast, bacteria degrading chlorobenzoate via gentisate or protocatechuate may possibly be better adapted to conditions leading to growth at reduced rates such as low oxygen and low substrate concentrations.  相似文献   

13.
U Lendenmann  M Snozzi    T Egli 《Applied microbiology》1996,62(5):1493-1499
In natural environments heterotrophic microorganisms encounter complex mixtures of carbon sources, each of which is present at a concentration of a few micrograms per liter or even less. Under such conditions no significant growth would be expected if cells utilized only one of the available carbon compounds, as suggested by the principle of diauxic growth. Indeed, there is much evidence that microbial cells utilize many carbon compounds simultaneously. Whereas the kinetics of single-substrate and diauxic growth are well understood, little is known about how microbial growth rates depend on the concentrations of several simultaneously utilized carbon sources. In this study this question was answered for carbon-limited chemostat growth of Escherichia coli fed with mixtures of up to six sugars; the sugars used were glucose, galactose, maltose, ribose, arabinose, and fructose. Independent of the mixture composition and dilution rate tested, E. coli utilized all sugars simultaneously. Compared with growth with a single sugar at a particular growth rate, the steady-state concentrations were consistently lower during simultaneous utilization of mixtures of sugars. The steady-state concentrations of particular sugars depended approximately linearly on their contributions to the total carbon consumption rate of the culture. Our experimental data demonstrate that the simultaneous utilization of mixtures of carbon sources enables heterotrophic microbes to grow relatively fast even in the presence of low environmental substrate concentrations. We propose that the observed reductions in the steady-state concentrations of individual carbon sources during simultaneous utilization of mixtures of carbon sources by heterotrophic microorganisms reflect a general kinetic principle.  相似文献   

14.
The bacterial flora of marine animals collected at depths of 570 to 2,446 m was examined for population size and generic composition, and the barotolerant characteristics of selected bacterial isolates were determined. Total numbers of culturable, aerobic, heterotrophic bacteria were found to be low in animals collected at the greatest ocean depths sampled in this study. Vibrio spp. were predominant in 10 of 15 samples examined, and Photobacterium spp. and yeasts were the major components of the remainder. Pseudomonas, Achromobacter, and Flavobacterium spp. comprised minor components of the gut flora of deep-sea fish. Forty-six pure cultures isolated from samples of seven animals were tested for growth or viability after incubation for 1 week under pressures ranging from 100 to 750 atm. Strains of bacteria isolated from samples of fish intestine were more barotolerant than those from the stomach (P<0.01). When incubated at a pressure of 600 atm, viability of bacterial cultures originally isolated from fish caught at a depth of 570 m was significantly decreased in comparison with viability of cultures from animals caught at depths of 1,393 and 2,446 m (P<0.01). From results of this study, it is concluded that the gut microflora of animals that dwell in the deeper regions of the ocean are adapted to an increased hydrostatic pressure environment, that is, the gut microflora is less inhibited by elevated hydrostatic pressure with increasing depth from which the host animal was collected.  相似文献   

15.
We devised a new method (the dorayaki method) using marine agar under in situ pressures to isolate barophilic bacteria from the intestinal contents of three deep-sea fishes (two Coryphaenoides yaquinae samples and one Ilyophis sp. sample) retrieved from depths of 4,700 to 6,100 m in the Northwest Pacific Ocean. All 10 strains isolated from one sample (C. yaquinae) were obligately barophilic. One of the 10 strains did not grow at atmospheric pressure and 103.4 MPa but did grow well between 20.7 and 82.7 MPa, with optimal growth at 41.4 MPa. This method is useful for isolating psychrophilic and barophilic deep-sea bacteria.  相似文献   

16.
To determine the effect of a secondary carbon source on biodegradation of a chloroaromatic compound, Pseudomonas cepacia DBO1(pRO101) was grown in continuous cultures on basal salts media containing various mixtures of 2,4-dichlorophenoxyacetic acid (2,4-D) and succinate. Both succinate and 2,4-D were metabolized over the entire range of dilution rates and compositions analyzed (0.05 to 0.6 h-1). 2,4-Dichlorophenol (DCP), the only intermediate detected, accumulated to significant amounts (10 to 21 mg/liter) in the chemostat only when the dilution rate was 0.4 h-1 or greater. At these concentrations, DCP reduced the apparent growth rate of P. cepacia DBO1(pRO101) in batch cultures by 15 to 35% over the apparent growth rate on succinate alone. Succinate fed to the chemostat increased the cell density as well as the percentage of 2,4-D that was consumed at each dilution rate. When the amount of succinate in the feed exceeded the amount of 2,4-D, the specific rates of 2,4-D degradation in the chemostat or by washed cells were significantly lower than the specific rates for cells grown on 2,4-D alone, suggesting repression by succinate. However, when the amount of 2,4-D in the feed exceeded the amount of succinate, the specific rates of 2,4-D degradation remained at values equivalent to or higher than the specific rate for cells grown on 2,4-D alone. DCP accumulated significantly in the washed-cell assay, suggesting that the level of DCP hydroxylase is rate limiting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Properties of Bacteria Isolated from Deep-Sea Sediments   总被引:6,自引:0,他引:6       下载免费PDF全文
Thirty-eight isolates were subjected to taxonomic analysis by computer. Of the 38 isolates, 31 were from sediment samples collected at depths from 9,400 to 10,400 meters in the Philippine and Marianas Trenches of the Pacific Ocean, and 7 cultures were from seawater samples collected at various depths from surface to 4,000 meters and from several locations in the Pacific Ocean. A total of 116 characteristics were determined for each isolate, coded, and transferred to punch cards. Similarity values were obtained by computer analysis, with the use of two recently developed computer programs. Five distinct phenetic clusters were observed from the numerical analyses. Four of the clusters were identified as species of the genus Pseudomonas, and one, as an aerogenic species of Aeromonas. Group IV was identified as pigmented Pseudomonas fluorescens, and the major cluster, consisting of groups I and II, which merged at a species level of similarity, was treated as a new species of Pseudomonas. The 38 strain data were compared with data for 132 marine and nonmarine strains previously subjected to computer taxonomic analysis. The barotolerant deep-sea strains, with the exception of the deep-sea P. fluorescens isolates, clustered separately from all other marine strains.  相似文献   

18.
We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation.  相似文献   

19.
Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.  相似文献   

20.
Regulation of cell-specific cellulase synthesis (expressed in milligrams of cellulase per gram [dry weight] of cells) by Clostridium thermocellum was investigated using an enzyme-linked immunosorbent assay protocol based on antibody raised against a peptide sequence from the scaffoldin protein of the cellulosome (Zhang and Lynd, Anal. Chem. 75:219-227, 2003). The cellulase synthesis in Avicel-grown batch cultures was ninefold greater than that in cellobiose-grown batch cultures. In substrate-limited continuous cultures, however, the cellulase synthesis with Avicel-grown cultures was 1.3- to 2.4-fold greater than that in cellobiose-grown cultures, depending on the dilution rate. The differences between the cellulase yields observed during carbon-limited growth on cellulose and the cellulase yields observed during carbon-limited growth on cellobiose at the same dilution rate suggest that hydrolysis products other than cellobiose affect cellulase synthesis during growth on cellulose and/or that the presence of insoluble cellulose triggers an increase in cellulase synthesis. Continuous cellobiose-grown cultures maintained either at high dilution rates or with a high feed substrate concentration exhibited decreased cellulase synthesis; there was a large (sevenfold) decrease between 0 and 0.2 g of cellobiose per liter, and there was a much more gradual further decrease for cellobiose concentrations >0.2 g/liter. Several factors suggest that cellulase synthesis in C. thermocellum is regulated by catabolite repression. These factors include: (i) substantially higher cellulase yields observed during batch growth on Avicel than during batch growth on cellobiose, (ii) a strong negative correlation between the cellobiose concentration and the cellulase yield in continuous cultures with varied dilution rates at a constant feed substrate concentration and also with varied feed substrate concentrations at a constant dilution rate, and (iii) the presence of sequences corresponding to key elements of catabolite repression systems in the C. thermocellum genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号