首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Xylose or glucose (5 g/l) was utilized simultaneously with benzoate (5 g/l) byRhodosporidium toruloides andRhodotorula rubra in batch culture. At a higher glucose concentration, benzoate was utilized only after glucose was depleted from the media. Both yeasts preferentially utilized benzoate before xylose even if there were more than 5 g xylose/l.Rhodotorula glutinis preferentially utilized glucose (10 g/l) before benzoate but utilized xylose and benzoate simultaneously.The authors are with the Department of Biochemical Technology, Faculty of Chemistry, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovak Republic  相似文献   

2.
Fuzzy reasoning was applied to control both ethanol and glucose concentrations in fed-batch cultures of baker's yeast. This fuzzy controller consisted of three membership functions (concentrations of dissolved oxygen (DO), ethanol and glucose) and 18 production rules. Fuzzy inference was carried out by IF {A is a and B is b,...#x007D;, THEN {C is c} from the on-line measured concentrations of DO, ethanol and glucose. When medium concentrations of ethanol and glucose in fed-batch culture of baker's yeast were set at 2 g/l and 0.2 g/l, both ethanol and glucose concentrations were controlled at 2.67±0.35 g/l and 0.27±0.25 g/l, respectively, ethanol production was reduced from 26 g/l to 34 g/l, cell yield increased from 0.38 to 0.53 g dry cell/g consumed glucose and ethanol yield decreased from 0.50 to 0.14 g ethanol/g consumed glucose, respectively, as compared with those of the glucose only control at 0.2 g/l.  相似文献   

3.
A Flow Injection Analysis (FIA) for sucrose using invertase (E.C. 3.2.1.26), mutarotase (E.C.5.1.3.3) and glucose oxidase (E.C.1.1.3.4) was developed. The enzymes were immobilised on glass beads using glutaraldehyde. The sucrose concentration was related to oxygen saturation. Fall in O2 concentration, as a result of sucrose oxidation, was detected by a low cost, home-made O2 electrode. The system was able to measure sucrose from 0.025 to 100mM with a response time of 6min using 200 l of sample, with an apparent Km of 42mM of sucrose. The system has been operated satisfactorily for 50 days without loss any initial activity.  相似文献   

4.
The effect of 5-hydroxytryptophan (5-HTP)—the precursor of serotonin (5-hydroxytryptamine, 5-HT)—and of an inhibitor,N-(dl-seryl)-N-(2,3,4-trihydroxybenzyl)hydrazine (Ro4-4602), ofl-aromatic amino acid decarboxylase on the metabolism of glucose to amino acids in brain tissue was investigated. Labeled glucose (20 Ci, 0.24 mg in 0.2 ml 0.9% saline) was injected intravenously into fed rats pretreated with Ro4-4602 (50 mg/kg intraperitoneally) either alone or in combination with 5-HTP (30 mg/kg intravenously) or with the appropriate vehicle. After the injection of Ro4-4602 plus 5-HTP, the concentrations of 5-HT and 5-HTP in brain were increased, but the increase of 5-HTP that Ro4-4602 slightly inhibits the reaction of decarboxylation in the brain, although at the dose used the drug is usually considered to act only peripherally. After administration of Ro4-4602 alone or combined with 5-HTP, the concentration of glucose in plasma was not significantly increased. However, the concentration of glucose in brain was markedly increased with such treatments. The administration of Ro4-4602 alone or combined with 5-HTP reduced the flux of14C from labeled glucose to amino acids in brain. The concentrations of amino acids in brain were little changed by these treatments.  相似文献   

5.
In technical as well as natural ecosystems, pollutants are often mineralised in the presence of easily degradable carbon sources. A laboratory model system consisting of Escherichia coli ML 30 growing with mixtures of 3-phenylpropionic acid (3ppa, pollutant) and glucose (easily degradable substrate) was investigated in batch and carbon-limited continuous culture. Untypically, a linear growth pattern was observed during batch cultivation with 3ppa as the only carbon/energy source. When exposed to mixtures of both substrates in batch culture, E. coli utilised the two compounds sequentially. However, 3ppa and glucose were consumed simultaneously in continous culture. Whereas a pulse of excess glucose to a batch culture growing with 3ppa led to the repression of 3ppa utilisation, an excess of glucose added into continuous culture did not inhibit the utilisation of 3ppa. During continuous cultivation the 3ppa-degrading enzyme system operated close to saturation.  相似文献   

6.
A fast, sensitive, interference-free, single enzyme single reagent glucose biosensor, operated in flow injection analysis (FIA) mode, was developed. The method used involved formation of colored complex of titanium sulfate reagent with the peroxide generated by glucose oxidase immobilized in a packed bed reactor. The color developed was detected spectrophotometrically in a flow cuvette. The system could measure down to 0.5 mg glucose l–1 and the response was reproducible and linear in the range 1 mg l–1 to 100 mg l–1. The analysis time for a 500 l sample was 35 s and was free of interference from a number of substances tested. Analysis results using an off-line batch kit were observed to be in agreement with the developed system for determination of glucose in blood plasma samples.  相似文献   

7.
Charles V. Mobbs 《Genetica》1993,91(1-3):239-253
Glucose may drive some age-correlated impairments and may mediate some effects of dietary restriction on senescence. The hypothesis that cumulative deleterious effects of glucose may impair hypothalamic neurons during aging, leading to hyperinsulinemia and other age-correlated pathologies, is examined in the context of genetic influences. Susceptibility to toxic effects of gold-thio-glucose (GTG) is correlated with longevity across several mouse strains. GTG and chronic hyperglycemia induce specific impairments in the ventromedial hypothalamus similar to impairments which occur during aging. GTG and a high-calorie diet both induce chronic hyperinsulinemia, leading initially to hypoglycemia, followed by the development of insulin resistance and hyperglycemia. Aging in humans and rodents appears to entail a similar pattern of hyperinsulinemia followed by insulin resistance. In humans, genetic susceptibility to high-calorie diet-induced impairments in glucose metabolism is extremely common in many indigenous populations, possibly due to the selection of the thrifty genotype. It is suggested that the thrifty genotype may entail enhanced sensitivity to the neurotoxic effects of glucose, and may represent an example of antagonistic pleiotropy in human evolution. These data are consistent with the hypothesis that genetic susceptibility of hypothalamic neurons to the cumulative toxic effects of glucose (glucose neurohumoral hysteresis) may correlate with genetic influences on longevity.  相似文献   

8.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a glucose negative mutant ofZymomonas mobilis was monitored. The results were analyzed using a recently described method based on polynomial fitting and calculation of intantaneous and overall parameters. These parameters described well the physiology of this mixed-substrate mixed-product fermentation. Growth of the mutant was greatly inhibited on this medium. Fructose was quantitatively converted into sorbitol while glucose was oxidized into gluconic acid .This latter product was utilized as substrate for cell growth and ethanol production.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qG specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - ySor/f sorbitol yield on fructose, g/g - YP/G ethanol yield on glucose, g/g  相似文献   

9.
Summary The maltose utilization system of Candida utilis was affected by glucose through two different mechanisms: catabolite repression and inactivation. Maltose permease was under the control of both, whereas -glucosidase was only repressed.In glucose-maltose continuous culture, both sugars were consumed simultaneously at glucose steady-state concentrations in the fermentor below 100 mg/l, corresponding to dilution rates lower than 0.4 h-1. At higher dilution rates, and consequently higher glucose concentrations, repression increased steeply, being complete when glucose concentration reached 170 mg/l.Glucose induced inactivation of maltose permease, in maltose-growing and resting cells, by decreasing V max, without changing maltose affinity for its transport system. The inactivation process apparently required the entrance of the inactivator into the cell and its subsequent phosphorylation because: 1) The specific inactivation rate showed a dependence on glucose similar to that of glucose transport and 2) only rapidly phosphorylated glucose analogues could mimic the inactivation effect.  相似文献   

10.
Pediococcus halophilus possesses phosphoenolpyruvate:mannose phosphotransferase system (man:PTS) as a main glucose transporter. A man:PTS defective (man:PTSd) strain X-160 could, however, utilize glucose. A possible glucose-transport mechanism other than PTS was studied with the strain X-160 and its derivative, man:PTSd phosphofructokinase defective (PFK) strain M-13. Glucose uptake by X-160 at pH 5.5 was inhibited by any of carbonylcyanide m-chlorophenylhydrazone, nigericin, N,N-dicyclohexylcarbodiimide, or iodoacetic acid. The double mutant M-13 could still transport glucose and accumulated intracellularly a large amount of hexose-phosphates (ca. 8 mM glucose 6-phosphate and ca. 2 mM fructose 6-phosphate). Protonophores also inhibited the glucose transport at pH 5.5, as determined by the amounts of accumulated hexose-phosphates (< 4 mM). These showed involvement of proton motive force (P) in the non-PTS glucose transport. It was concluded that the non-PTS glucose transporter operated in concert with hexokinase or glucokinase for the metabolism of glucose in the man:PTSd strain.Abbreviations BM basal medium - BM-G basal medium containing glucose - CM complex medium - man:PTS phosphoenolpyruvate:mannose phosphotransferase system - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexyl carbodiimide - P proton motive force - pH transmembrane pH gradient - transmembrane electrical potential difference - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PIPES piperazine-N,N-bis(-ethanesulfonic acid) - MES 4-morpholineethanesulfonic acid - G-6-P glucose 6-phosphate - F-6-P fructose 6-phosphate - FDP fructose 1,6-bisphosphate - EMP Embden-Meyerhof-Parnas pathway - PFK phosphofructokinase - GK glucokinase - HK hexokinase - IAA iodoacetic acid - IIman enzyme II component of man:PTS  相似文献   

11.
Summary A Saccharomyces cerevisiae strain harbouring the recombinant plasmid pSMF38TMA was cultured in a jar fermentor under the control of glucose concentration. In the recombinant plasmid, the mouse -amylase gene was fused to the S. cerevisiae SUC2 promoter. When glucose concentration in the medium was controlled at 10 g/l, the gene expression was completely repressed. On the other hand, the -amylase was produced and secreted in the medium at a very high level, around 200 mg/l as evaluated from the specific activity of commercially available human salivary amylase, when the glucose was kept at 0.15 g/l. This amount was almost 20-fold that obtained at 10 g/l glucose. The specific growth rate of the yeast in this culture was almost 60% of that attained with 10 g/l glucose. To obtain higher cell growth and productivity, the yeast was at first cultured at 2 g/l glucose and the concentration was then lowered to 0.15 g/l. By this control of the glucose concentration, on-off regulation of gene expression from the SUC promoter could be attained.  相似文献   

12.
The OprB porin-mediated glucose transport system was investigated in Pseudomonas chlororaphis, Burkholderia cepacia, and Pseudomonas fluorescens. Kinetic studies of [U-14C]glucose uptake revealed an inducible system of low K m values (0.3–5 M) and high specificity for glucose. OprB homologs were purified and reconstituted into proteoliposomes. The porin function and channel preference for glucose were demonstrated by liposome swelling assays. Examination of the periplasmic glucose-binding protein (GBP) components by Western immunoblotting using P. aeruginosa GBP-specific antiserum revealed some homology between P. aeruginosa GBP and periplasmic proteins from P. fluorescens and P. chlororaphis but not B. cepacia. Circular dichroism spectropolarimetry of purified OprB-like porins from the three species revealed sheet contents of 31–50% in agreement with 40% sheet content for the P. aeruginosa OprB porin. These findings suggest that the high-affinity glucose transport system is primarily specific for glucose and well conserved in the genus Pseudomonas although its outer membrane component may differ in channel architecture and specificity for other carbohydrates.  相似文献   

13.
In this study, we investigated the relationship between carbohydrate metabolism and repression of staphylococcus enterotoxin A (SEA) in Staphylococcus aureus 196E and a pleiotrophic mutant derived from strain 196E. The mutant, designated at strain 196E-MA, lacked a functional phosphoenolpyruvate phosphotransferase system (PTS). The mutant produced acid, under aerobic conditions, from only glucose and glycerol. The parent strain contained an active PTS, and aerobically produced acid from a large number of carbohydrates. Prior growth in glucose led to repression of SEA synthesis in the parent strain; addition to the casamino acids enterotoxin production medium (CAS) led to more severe repression of toxin synthesis. The repression was not related to pH decreases produced by glucose metabolism. When S. aureus 196E was grown in the absence of glucose, there was inhibition of toxin production as glucose level was increased in CAS. The inhibition was related to pH decrease and was unlike the repression observed with glucose-grown strain 196E. The inhibition of SEA synthesis in mutant strain 196E-MA was approximately the same in cells grown with or without glucose and was pH related. Repression of SEA synthesis similar to that seen with glucose-grown S. aureus 196E could not be demonstrated in the mutant. In addition, glucose-grown S. aureus 196E neither synthesized -galactosidase nor showed respiratory activity with certain tricarboxylic acid (TCA) cycle compounds. Glucose-grown strain 196E-MA, however, did not show supressed respiration of TCA cycle compounds; -galactosidase was not synthesized because the mutant lacked a functional PTS. Cyclic adenosine-3, 5-monophosphate did not reverse the repression by glucose of SEA or -galactosidase synthesis in glucose-grown S. aureus 196E. An active PTS appears to be necessary to demonstrate glucose (catabolite) repression in S. aureus.Abbreviations SEA staphylococcal enterotoxin A - SEB staphylococcal enterotoxin B - SEC staphylococcal enterotoxin C - PTS phosphoenolpyruvate phosphotransferase system - CAS casamino acids salts medium - TCA tricarboxylic acid cycle  相似文献   

14.
Summary Organoboronic acids may be used as solubilizing agents for glucose in organic solvents for the enzymatic condensation of glucose. Glucose in organic solvents was condensed to -glucobioses by -glucosidase in the presence of organoboronic acids. Organoboronic acids appear to be a good solubilizing agents without any disturbing effect on the enzyme reaction.  相似文献   

15.
Summary A commercial glucose analyzer, originally designed for monitoring of blood glucose in patients, was tested for use in fermentation processes. The system operates in such a way that the measured value is updated every 90 seconds. The measuring range of the system is 0–5 g glucose/l and the accuracy is ±7%. The response time was found to be approximately 6 min. The system was used to follow fermentations with two different microorganisms, Saccharomyces cerevisiae and Escherichia coli in media containing up to 5 g/l of glucose. The performance was fully satisfactory and the values had a very good correlation with off-line analyses.  相似文献   

16.
Summary. Taurine has several biological processes such as hypoglycemic action, antioxidation, detoxification, etc. To assess the effect of taurine administration on the guinea pigs with hyperglycemia, blood glucose, C-peptide levels together with morphologic alterations in the pancreatic ultrastructure were investigated in terms of hypoglycemic action and malondialdehyde and total sulfhydryl group levels with regard to oxidation-antioxidation relation. Animals were divided into four groups of six. Glucose supplementation group was administrated a single dose of glucose (400mg/kg, i.p.) injection. Glucose and taurine supplementation group was administrated glucose treatment (a single dose, 400mg/kg, i.p.) following taurine (a single dose, 200mg/kg, i.p.). Taurine and glucose supplementation group was administered taurine treatment (a single dose, 200mg/kg, i.p.) following glucose treatment (a single dose, 400mg/kg, i.p.). Control animals received no treatment. Blood samples were collected at the end of the experiments for the determination of glucose, C-peptide (indicator of insulin secretion), lipid peroxidation (thiobarbituric acid reactive substances), and total sulfhydryl groups levels. Pancreatic tissue samples were then collected and processed for transmission electron microscopy. The findings showed that glucose supplementation following taurine administration significantly decreased blood glucose level by increasing C-peptide level and the pancreatic secretion stimulated morphologically and insignificantly changed thiobarbituric acid reactive substances and total sulfhydryl group levels. These observations suggest that taurine administration may be useful in hyperglycemia because of its hypoglycemic and protective effects.  相似文献   

17.
Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about −482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s−1, due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R2 = 0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis–Menten constant was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells.  相似文献   

18.
NADP-glutamate dehydrogenase (NADP-GDH) and NAD-glutamate dehydrogenase (NAD-GDH) activities from Bipolaris maydis race T (ATCC 36180) were determined by measuring the change in absorbance at 340 nm of either reduced NADP or NAD in a reaction mixture of NH4C1, -ketoglutarate and a cell free extract of the fungus. NADP-GDH activity was high at 48 h, but low at 72 and 96 h when the fungus was incubated on a reciprocal shaker at 28 °C in a mineral salts medium containing 2 g/l glucose and 4 g/l Lasparagine. In contrast, in these cultures NAD-GDH activity was low at 48 h, but high at 72 and 96 h. At 72 and 96 h glucose was not detected in the culture medium. In addition, levels of ammonium and pH increased from 0.0 moles/ml and pH 5.8 at 48 h to 10.6 moles/ml and pH 7.2 at 72 h, and to 23.0 moles/ml and pH 8.4 at 96 h. Fungal mycelia were transferred after 48 h of incubation on media containing 2 g/l glucose and 4 g/l L-asparagine to fresh media containing 0, 2 or 5 g/l glucose with and without 4 g/l L-asparagine. Twenty-four h after transfer to fresh media containing 5 g/l glucose with L-asparagine or 2 or 5 g/l glucose without L-asparagine, NADP-GDH activity was high and NAD-GDH activity was low. Glucose was detected in the culture medium, ammonium was not detected and the pH remained unchanged or decreased. In contrast, 24 h after transfer to fresh media with 0 or 2 g/l glucose with L-asparagine and on media lacking glucose or L-asparagine, NADP-GDH activity was low and NAD-GDH activity was high. Glucose was not detected in the culture medium, ammonium levels were high and the pH increased. Thus, accumulation of ammonium and pH increases accompanying depletion of glucose in a L-asparagine medium could be related to a change in the capacity of B. maydis race T to assimilate and produce ammonium via pathways involving glutamate dehydrogenases.  相似文献   

19.
Microvessels were isolated from a bovine cortex and the transport of glucose was investigated by using 2-deoxy-d-[3H]glucose (2-DG). The apparentK m for 2-DG transport was 118 M and therefore indicates a significant high affinity for the substrate. The inhibition of 2-DG uptake byd-glucose showed an apparentK i of 222 M. Other sugars, e.g., 3-methyl-d-glucose andd-fructose, also inhibited the 2-DG uptake by 60.6 and 36.0%, respectively. Phloretin (1×10–3 M) inhibited the 2-DG transport more than phlorizin (83.7 vs. 53.8%). Ouabain (1 and 5×10–4 M) did not inhibit the uptake of 2-DG but 2,4-dinitrophenol (1×10–4 M) did (78.0%). The uptake of 2-DG could not be demonstrated in homogenized microvessels. Adenine nucleotides (conc. 2 mM) had various effects on the 2-DG uptake by microvessels. ATP inhibited the uptake by 20.7%, ADP was virtually without effect, and AMP stimulated the uptake of 2-DG by 8.5%. It was also found that the decrease of adenylate energy charge favors the uptake of 2-DG. All these findings suggest that in cerebral microvessels of a bovine cortex, 2-DG is apparently transported by a specific, carrier-mediated transport system.Dedicated to Prof. Dr. R. Sammet on the occasion of his 60th birthday.  相似文献   

20.
Summary The formation and location of glucose oxidase was studied in Aspergillus niger, which was pregrown under citric acid producing conditions. Glucose oxidase could be de novo induced by a shift in pH from 1.7 to 5.5. The induction required the intracellular presence of either glucose or glucose-6-phosphate. Glucose oxidase so produced was rapidly secreted into the medium, which was not due to autolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号