首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A putative alpha-glucosidase belonging to glycosyl hydrolase family 4 of Thermotoga maritima (TM0752) was expressed in Escherichia coli and it was found that the recombinant protein (Agu4B) was a p-nitrophenyl alpha-D-glucuronopyranoside hydrolyzing alpha-glucuronidase, not alpha-glucosidase. It did not hydrolyze 4-O-methyl-D-glucuronoxylan or its fragment oligosaccharides. Agu4B was thermostable with an optimum temperature of 80 degrees C. It strictly required Mn(2+) and thiol compounds for its activity. The presence of NAD(+) slightly activated the enzyme. The amino acid sequence of Agu4B showed higher identity with Agu4A (another alpha-glucuronidase of T. maritima, 61%) than with AglA (alpha-glucosidase of T. maritima, 48%).  相似文献   

2.
3.
The gene for a novel alpha-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 alpha-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an alpha-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90 degrees C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.  相似文献   

4.
Jeong E  Jo H  Kim TG  Ban C 《PloS one》2012,7(4):e34529
The MutS2 homologues have received attention because of their unusual activities that differ from those of MutS. In this work, we report on the functional characteristics and conformational diversities of Thermotoga maritima MutS2 (TmMutS2). Various biochemical features of the protein were demonstrated via diverse techniques such as scanning probe microscopy (SPM), ATPase assays, analytical ultracentrifugation, DNA binding assays, size chromatography, and limited proteolytic analysis. Dimeric TmMutS2 showed the temperature-dependent ATPase activity. The non-specific nicking endonuclease activities of TmMutS2 were inactivated in the presence of nonhydrolytic ATP (ADPnP) and enhanced by the addition of TmMutL. In addition, TmMutS2 suppressed the TmRecA-mediated DNA strand exchange reaction in a TmMutL-dependent manner. We also demonstrated that small-angle X-ray scattering (SAXS) analysis of dimeric TmMutS2 exhibited nucleotide- and DNA-dependent conformational transitions. Particularly, TmMutS2-ADPnP showed the most compressed form rather than apo-TmMutS2 and the TmMutS2-ADP complex, in accordance with the results of biochemical assays. In the case of the DNA-binding complexes, the stretched conformation appeared in the TmMutS2-four-way junction (FWJ)-DNA complex. Convergences of biochemical- and SAXS analysis provided abundant information for TmMutS2 and clarified ambiguous experimental results.  相似文献   

5.
The pgk-tpi gene locus of Thermotoga maritima encodes both phosphoglycerate kinase (PGK) and a bienzyme complex consisting of a fusion protein of PGK with triosephosphate isomerase (TIM). No separate tpi gene for TIM is present in T. maritima. A frame-shift at the end of the pgk gene has been previously proposed as a mechanism to regulate the expression of the two protein variants [Schurig et al., EMBO J. 14 (1995), 442-451]. Surprisingly, the complete T. maritima genome was found to contain a pgk-tpi sequence not requiring the proposed frameshift mechanism. To clarify the apparent discrepancy, a variety of DNA sequencing techniques were applied, disclosing an anomalous local variability in the pgk-tpi fusion region. The comparison of different DNA samples and the mass spectrometric analysis of the amino acid sequence of the natural fusion protein from T. maritima MSB8 confirmed the local variability of the DNA variants. Since not all peptide masses could be assigned, further variations are conceivable, suggesting an even higher heterogeneity of the T. maritima MSB8 strain.  相似文献   

6.
During growth with xylose or xylan as the source of carbon, xylanase production by Thermotoga maritima MSB8 was enhanced about 10-fold compared with growth with glucose or starch. Two extremely thermostable endoxylanases (1,4-(beta)-d-xylan-xylanohydrolase, EC 3.2.1.8), designated XynA and XynB, were identified and purified from cells of this organism. XynA and XynB occurred as proteins with apparent molecular masses of about 120 and 40 kDa, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Maximum activity at the optimal pH (pH 6.2 and pH 5.4 for XynA and XynB, respectively) was measured at about 92(deg)C for XynA (10-min assay) and at about 105(deg)C for XynB (5-min assay). XynB activity was stimulated twofold by the addition of 500 mM NaCl, while XynA displayed maximum activity without the addition of salt. Both xylanases were tolerant of relatively high salt concentrations. At 2 M (about 12% wt/vol) NaCl, XynA and XynB retained 49 and 65%, respectively, of their maximum activities. In contrast to XynB, XynA was able to adsorb to microcrystalline cellulose. Antibodies raised against a recombinant truncated XynA protein cross-reacted with XynB, indicating that the enzymes may have sequence or structural similarities. Part of the xylanase activity appeared to be associated with the outer membrane of T. maritima cells, since more than 40% of the total xylanase activity present in the crude cellular extract was found in the membrane fraction after high-speed centrifugation. Most of the membrane-bound activity appeared to be due to the 120-kDa xylanase XynA.  相似文献   

7.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80 degrees C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70 degrees C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and alpha-D-glucose-1-phosphate. The Km for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the kcat was 5.4 s(-1). In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-beta-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s(-1)) kcat followed by 6-deoxy-D-glucose (17 s(-1)) and 2-deoxy-D-glucose (16 s(-1)). The natural substrate, D-glucose with the kcat of 8.0 s(-1) had the highest (1.1 x 10(4) M(-1) s(-1)) kcat/Km compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, alpha-D-glucose-1-phosphate, at higher concentrations.  相似文献   

8.
The crystal structure of xylanase 10B from Thermotoga maritima MSB8 (TmxB), a hyperthermostable xylanase, has been solved in its native form and in complex with xylobiose or xylotriose at 1.8 A resolution. In order to gain insight into the substrate subsite and the molecular features for thermal stability, we compared TmxB with family 10 xylanase structures from nine microorganisms. As expected, TmxB folds into a (beta/alpha)8-barrel structure, which is common among the glycoside hydrolase family 10. The enzyme active site and the environment surrounding the xylooligosaccharide of TmxB are highly similar to those of family 10 xylanases. However, only two xylose moieties were found in its binding pocket from the TmxB-xylotriose complex structure. This finding suggests that TmxB could be a potential biocatalyst for the large-scale production of xylobiose. The result of structural analyses also indicated that TmxB possesses some additional features that account for its thermostability. In particular, clusters of aromatic residues together with a lack of exposed hydrophobic residues are characteristic of the TmxB structure. TmxB has also a significant number of ion pairs on the protein surface that are not found in other thermophilic family 10 xylanases.  相似文献   

9.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

10.
孙涛  申宁  白羽  李文豪  韦萍 《微生物学通报》2011,38(7):1090-1097
来源于极端嗜热菌海栖热袍菌(Thermotoga maritima MSB8)的木聚糖酶B具有极高的热稳定性,在饲料、造纸、能源和食品医药行业具有巨大应用潜力。携带酶基因xynB64的pET28a(+)重组载体在宿主大肠杆菌BL21(DE3)中诱导表达,重组酶活力较低。更换宿主为携带稀有tRNA基因的大肠杆菌:BL21-CodonPlus(DE3)-RIPL和Rosetta(DE3)后,酶活力分别提高了197%和277%,但是后者中的表达会形成部分包涵体。宿主菌为大肠杆菌Rosetta(DE3),更换载体为4种融合表达载体pET32a(+)、pET42a(+)、pET43.1a(+)和pMAL-c2X进行表达,重组酶分别融合了Trx、GST、Nus和MBP标签。其中Rosetta(DE3)/pMAL-c2X-xynB64表达酶活力最高,相当于Rosetta(DE3)/pET28a-xynB64表达酶的88%,而且目的酶表达量占全细胞蛋白的40%,几乎不形成包涵体。  相似文献   

11.
AmyA, an alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima, is able to hydrolyze internal alpha-1,4-glycosidic bonds in various alpha-glucans at 85 degrees C as the optimal temperature. Like other glycoside hydrolases, AmyA also catalyzes transglycosylation reactions, particularly when oligosaccharides are used as substrates. It was found that when methanol or butanol was used as the nucleophile instead of water, AmyA was able to catalyze alcoholysis reactions. This capability has been evaluated in the past for some alpha-amylases, with the finding that only the saccharifying fungal amylases from Aspergillus niger and from Aspergillus oryzae present measurable alcoholysis activity (R. I. Santamaria, G. Del Rio, G. Saab, M. E. Rodriguez, X. Soberon, and A. Lopez, FEBS Lett. 452:346-350, 1999). In the present work, we found that AmyA generates larger quantities of alkyl glycosides than any amylase reported so far. In order to increase the alcoholytic activity observed in AmyA, several residues were identified and mutated based on previous analogous positions in amylases, defining the polarity and geometry of the active site. Replacement of residue His222 by glutamine generated an increase in the alkyl glucoside yield as a consequence of a higher alcoholysis/hydrolysis ratio. The same change in specificity was observed for the mutants H222E and H222D, but instability of these mutants toward alcohols decreased the yield of alkyl glucoside.  相似文献   

12.
以海栖热袍菌 (Thermotoga maritima) MSB8菌株基因组DNA为模板,通过PCR扩增出木聚糖酶(XylanaseB)基因, 将此基因克隆至大肠杆菌表达载体pET_28a(+)和毕赤酵母表达载体pPIC9K,并分别转化大肠杆菌 BL21和毕赤酵母GS115。该木聚糖酶在大肠杆菌细胞中表达量高, 但不能分泌; 而在毕赤酵母细胞的表达产物可分泌至胞外。酶学性质分析表明,此酶分子量约为40kD,其最适反应温度为90℃, 最适反应pH值为6.65,且在碱性条件下稳定,具有重要的工业应用前景。  相似文献   

13.
Bioelectrochemical systems are an attractive technology for regulating microbial activity. The effect of an applied potential on hydrolysis of starch in Thermotoga maritima as a model bacterium was investigated in this study. A cathodic potential (?0.6 and ?0.8 V) induced 5-h earlier growth initiation of T. maritima with starch as the polymeric substrate than that without electrochemical regulation. Moreover, metabolic patterns of starch consumption were altered by the cathodic potential. While acetate, H2, and CO2 were the major products of starch consumption in the control experiment without electrolysis, lactate accumulation was detected rather than decreased acetate and H2 levels in the bioelectrochemical system experiments with the cathodic potential. These results indicate that the applied potential could control microbial activities related to the hydrolysis of polymeric organic substances and shift carbon and electron flux to a lactate-producing reaction in T. maritima.  相似文献   

14.
The gene for a novel α-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 α-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an α-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90°C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.  相似文献   

15.
The putative beta-glucuronidase from Thermotoga maritima, comprising 563 amino acid residues conjugated with a Hisx6 tag, was cloned and expressed in Escherichia coli. The enzyme has a moderately broad specificity, hydrolysing a range of p-nitrophenyl glycoside substrates, but has greatest activity on p-nitrophenyl beta-D-glucosiduronic acid (kcat=68 s(-1), kcat/K(M)= 4.5x10(5) M(-1) s(-1)). The enzyme also shows a relatively broad pH-dependence with activity from pH4.5 to 7.5 and a maximum at pH6.5. As expected the enzyme is stable towards heat denaturation, with a half life of 3h at 85 degrees C, in contrast to the mesophilic E. coli enzyme, which has a half life of 2.6h at 50 degrees C. The identity of the catalytic nucleophile was confirmed as Glu476 within the sequence VTEFGAD by trapping the glycosyl-enzyme intermediate using the mechanism-based inactivator, 2-deoxy-2-fluoro-beta-D-glucosyluronic acid fluoride and identifying the labeled peptide in peptic digests by HPLC-MS/MS methodologies. Consistent with this, the Glu476Ala mutant was shown to be hydrolytically inactive. The acid/base catalyst was confirmed as Glu383 by generation and kinetic analysis of enzyme mutants modified at that position, Glu383Ala and Glu383Gln. The demonstration of activity rescue by azide is consistent with the proposed role for this residue. This enzyme therefore appears suitable for use in enzymatic oligosaccharide synthesis in either the transglycosylation mode or by use of glycosynthase and thioglycoligase approaches.  相似文献   

16.
DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage.  相似文献   

17.
Zein F  Zhang Y  Kang YN  Burns K  Begley TP  Ealick SE 《Biochemistry》2006,45(49):14609-14620
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 A resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared with the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1-18), which includes helix alpha0, the beta2-alpha2 loop (46-56), which includes new helix alpha2a, and the C-terminus (270-280) of YaaD are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and Lys82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the beta-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180 degrees with respect to each other.  相似文献   

18.
A gene encoding for a thermostable exopolygalacturonase (exo-PG) from hyperthermophilic Thermotoga maritima has been cloned into a T7 expression vector and expressed in Escherichia coli. The gene encoded a polypeptide of 454 residues with a molecular mass of 51,304 Da. The recombinant enzyme was purified to homogeneity by heat treatment and nickel affinity chromatography. The thermostable enzyme had maximum of hydrolytic activity for polygalacturonate at 95 degrees C, pH 6.0 and retains 90% of activity after heating at 90 degrees C for 5 h. Study of the catalytic activity of the exopolygalacturonase, investigated by means of 1H NMR spectroscopy revealed an inversion of configuration during hydrolysis of alpha-(1-->4)-galacturonic linkage.  相似文献   

19.
To date, no 8-oxoguanine-specific endonuclease-coding gene has been identified in Thermotoga maritima of the order Thermotogales, although its entire genome has been deciphered. However, the hypothetical protein Tm1821 from T. maritima, has a helix-hairpin-helix motif that is considered to be important for DNA binding and catalytic activity. Here, Tm1821 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration. Tm1821 protein was found to efficiently cleave an oligonucleotide duplex containing 8-oxoguanine, but Tm1821 had little effect on other substrates containing modified bases. Moreover, Tm1821 strongly preferred DNA duplexes containing an 8-oxoguanine:C pair among oligonucleotide duplexes containing 8-oxoguanine paired with four different bases (A, C, G, or T). Furthermore, Tm1821 showed AP lyase activity and Schiff base formation with 8-oxoguanine in the presence of NaBH4, which suggests that it is a bifunctional DNA glycosylase. Tm1821 protein shares unique conserved amino acids and substrate specificity with an 8-oxoguanine DNA glycosylase from the hyperthermophilic archaeon. Thus, the DNA recognition and catalytic mechanisms of Tm1821 protein are likely to be similar to archaeal repair protein, although T. maritima is an eubacterium.  相似文献   

20.
AmyA, an α-amylase from the hyperthermophilic bacterium Thermotoga maritima, is able to hydrolyze internal α-1,4-glycosidic bonds in various α-glucans at 85°C as the optimal temperature. Like other glycoside hydrolases, AmyA also catalyzes transglycosylation reactions, particularly when oligosaccharides are used as substrates. It was found that when methanol or butanol was used as the nucleophile instead of water, AmyA was able to catalyze alcoholysis reactions. This capability has been evaluated in the past for some α-amylases, with the finding that only the saccharifying fungal amylases from Aspergillus niger and from Aspergillus oryzae present measurable alcoholysis activity (R. I. Santamaria, G. Del Rio, G. Saab, M. E. Rodriguez, X. Soberon, and A. Lopez, FEBS Lett. 452:346-350, 1999). In the present work, we found that AmyA generates larger quantities of alkyl glycosides than any amylase reported so far. In order to increase the alcoholytic activity observed in AmyA, several residues were identified and mutated based on previous analogous positions in amylases, defining the polarity and geometry of the active site. Replacement of residue His222 by glutamine generated an increase in the alkyl glucoside yield as a consequence of a higher alcoholysis/hydrolysis ratio. The same change in specificity was observed for the mutants H222E and H222D, but instability of these mutants toward alcohols decreased the yield of alkyl glucoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号