首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130.  相似文献   

3.
Caldentey J  Tuma R  Bamford DH 《Biochemistry》2000,39(34):10566-10573
The spike structure of bacteriophage PRD1 is comprised of proteins P2, P5, and P31. It resembles the corresponding receptor-binding structure of adenoviruses. We show that purified recombinant protein P5 is an elongated (30 x 2.7 nm; R(h) = 5.5 nm), multidomain trimer which can slowly associate into nonamers. Cleavage of the 340 amino acid long P5 with collagenase yields 2 fragments. The larger, 205 amino acid long C-terminal fragment appears to contain the residues responsible for the trimerization of the protein, whereas the smaller N-terminal part mediates the interaction of P5 with the pentameric vertex protein P31 (24 x 2.5 nm, R(h) = 4.2 nm). In addition, the presence of the N-terminal sequence is required for the formation of the P5 nonamer. The results presented here suggest that P5 and P31 form an elongated adaptor complex at the 5-fold vertexes of the virion which anchors the adsorption protein P2 (21 x 2.5 nm; R(h) = 4.1 nm). Our results also suggest that the P5 trimer forms a substantial part of the viral spike shaft that was previously thought to be composed exclusively of protein P2.  相似文献   

4.
IncP plasmid RP1 Tra regions are needed to assemble the receptor for lipid-containing double-stranded DNA bacteriophage PRD1 on the cell surface. Using radioactively labeled phage and electron microscopic techniques, we showed that the surfaces of Salmonella typhimurium(RP1) and Escherichia coli(RP1) cells contained approximately 50 and 20 PRD1 binding sites, respectively. Expression of the receptor was growth phase dependent and was highest at late logarithmic or early stationary phase. The PRD1-resistant RP1 transposon mutants isolated were all Tra-, and the transposons were located in both the Tra1 and Tra2 regions.  相似文献   

5.
6.
Summary Studies on the rate of synthesis of the and subunits of RNA polymerase in haploid strains of Escherichia coli K12 containing poorly-suppressed rif am o mutations provide conclusive evidence that synthesis of at least these two subunits is regulated.  相似文献   

7.
In yeast, two aminoacyl-tRNA synthetases, MetRS and GluRS, are associated with Arc1p. We have studied the mechanism of this complex formation and found that the non-catalytic N-terminally appended domains of MetRS and GluRS are necessary and sufficient for binding to Arc1p. Similarly, it is the N-terminal domain of Arc1p that contains distinct but overlapping binding sites for MetRS and GluRS. Localization of Arc1p, MetRS and GluRS in living cells using green fluorescent protein showed that these three proteins are cytoplasmic and largely excluded from the nucleus. However, when their assembly into a complex is inhibited, significant amounts of MetRS, GluRS and Arc1p can enter the nucleus. We suggest that the organization of aminoacyl-tRNA synthetases into a multimeric complex not only affects catalysis, but is also a means of segregating the tRNA- aminoacylation machinery mainly to the cytoplasmic compartment.  相似文献   

8.
Bacteriophage PRD1 is a tailless membrane-containing double-stranded (ds) DNA virus infecting a variety of Gram-negative bacteria. In order to affect cell lysis, like most dsDNA phages, PRD1 uses the holin-endolysin system. In this study, we identified two accessory lysis genes, XXXVI and XXXVII , coding for proteins P36 and P37, respectively. Using genetic complementation assays, we show that protein pair P36/P37 is a functional and interchangeable analogue of the Rz/Rz1 of bacteriophage λ. Utilizing molecular biology, electrochemical as well as various microscopic techniques, we characterized the lysis phenotypes of PRD1 host cells infected with mutant viruses. Our results indicate that proteins P36 and P37 confer a competitive advantage to the phage by securing the efficient disruption of the infected cell and consequent release of the phage progeny under less favourable growth conditions. In concordance with prior data and the results obtained in this study, we propose a model explaining the role of Rz/Rz1-like proteins in the lysis process: Rz/Rz1 complexes transform the mechanical stress caused by the holin lesion at the CM to the OM leading to its disintegration. Finally, identification of the Rz / Rz1 -like genes in PRD1 suggests that tailless icosahedral phages are involved in genetic trade with tailed bacteriophages.  相似文献   

9.
Assemblies of plasmid-encoded proteins direct the conjugative transfer of plasmid DNA molecules between bacteria. These include the membrane-associated mating pair formation (Mpf) complex necessary for pilus production and the cytoplasmic relaxosome required for DNA processing. The proposed link between these distinct protein complexes is the coupling protein (the TraG family of proteins). Interactions between the coupling protein and relaxosome components have been previously characterized and we document here, for the first time, a direct interaction between the coupling protein and an Mpf protein. Using the adenylate cyclase bacterial two-hybrid (BTH) system, we present in vivo evidence that the IncHI1 plasmid R27-encoded proteins TraG and TrhB interact. This interaction was verified through a co-immunoprecipitation reaction. We have also been able to delineate the interaction domain of TrhB to TraG by showing a positive interaction using the first 220 amino acids of TrhB (452 aa). TrhB has a proline-rich domain from amino acids 135-173 which may serve to facilitate protein interactions and/or periplasmic extension. TrhB self association was detected using far-Western, co-immunoprecipitation, and also BTH analysis, which was used to define the homotypic interaction domain, comprising a predicted coiled-coil region at residues 77-124 of TrhB. These data support a model in which the coupling protein interacts with an Mpf component to target the transferring DNA strand held by the relaxosome to the transmembrane Mpf complex.  相似文献   

10.
11.
The catabolic IncP1beta plasmid pTSA from Comamonas testosteroni T-2 was mapped by subtractive analysis of restriction digests, by sequencing outwards from the tsa operon (toluenesulfonate degradation), and by generating overlapping, long-distance-PCR amplification products. The plasmid was estimated to comprise 72 +/- 4 kb. The tsa region was found to be a composite transposon flanked by two IS1071 elements. A cryptic tsa operon was also present in the tsa transposon. Those backbone genes and regions which we sequenced were in the same order as the corresponding genes in resistance plasmid R751, and identities of about 99% were observed. Enrichment cultures with samples from four continents were done to obtain organisms able to utilize p-toluenesulfonate as the sole source of carbon and energy for aerobic growth. Most (15) of the 16 cultures (13 of them isolates) were obtained from contaminated sites and were attributed to three metabolic groups, depending on their metabolism of p-toluenesulfonate. The largest group contained the tsa transposon, usually (six of seven isolates) with negligible differences in sequence from strain T-2.  相似文献   

12.
DNA of bacteriophage PRD1 has protein P8 at its termini. Extracts of infected cells are able to derivatize P8 in vitro with labeled dGTP. Two early proteins, P1 and P8, products of genes I and VIII, respectively, are the only phage proteins necessary for the formation of the protein P8-dGMP complex. This was shown by complementation of extracts from cells infected with mutants and by use of extracts from cells carrying cloned genes I and VIII. With Escherichia coli mutants that are temperature sensitive for DNA synthesis, it was possible to show that the formation of the protein P8-dGMP complex was dependent upon the host replication apparatus. The analysis of the purified protein P8-dGMP complex by hydrolysis and enzymatic digestion showed that there is a covalent phosphodiester bond between tyrosine and 5'-dGMP.  相似文献   

13.
The formation of a multimeric nucleoprotein complex by the phage phi 29 dsDNA binding protein p6 at the phi 29 DNA replication origins, leads to activation of viral DNA replication. In the present study, we have analysed protein p6-DNA complexes formed in vitro along the 19.3 kb phi 29 genome by electron microscopy and micrococcal nuclease digestion, and estimated binding parameters. Under conditions that greatly favour protein-DNA interaction, the saturated phi 29 DNA-protein p6 complex appears as a rigid, rod-like, homogeneous structure. Complex formation was analysed also by a psoralen crosslinking procedure that did not disrupt complexes. The whole phi 29 genome appears, under saturating conditions, as an irregularly spaced array of complexes approximately 200-300 bp long; however, the size of these complexes varies from approximately 2 kb to 130 bp. The minimal size of the complexes, confirmed by micrococcal nuclease digestion, probably reflects a structural requirement for stability. The values obtained for the affinity constant (K(eff) approximately 10(5) M-1) and the cooperativity parameter (omega approximately 100) indicate that the complex is highly dynamic. These results, together with the high abundance of protein p6 in infected cells, lead us to propose that protein p6-DNA complexes could have, at least at some stages, during infection, a structural role in the organization of the phi 29 genome into a nucleoid-type, compact nucleoprotein complex.  相似文献   

14.
Escherichia coli cells and Streptomyces mycelia are able to form close contacts in the absence of a conjugative system which might facilitate intergeneric plasmid transfer without the genes required for mating pair formation (Tra2) of the RP4 plasmid. The same Tra2 genes found to be essential for RP4 plasmid transfer, RSF1010 mobilization, and donor-specific phage propagation in E. coli were also required for intergeneric transfer between E. coli and Streptomyces lividans.  相似文献   

15.
A 4.4-megadalton penicillinase plasmid, pWD2, from Neisseria gonorrhoeae was transformed into Escherichia coli. pWD2 was efficiently mobilized by IncP plasmids in E. coli but not by Flac, R1drd-19, or R64drd-11. pWD2 could be isolated as a DNA-protein relaxation complex with properties similar to the well characterized ColE1 complex. The host range of pWD2 was shown to include gonococci, Enterobacteriaceae, and Hemophilus influenzae, but not Acinetobacter calcoaceticus or Pseudomonas aeruginosa. These findings suggest that P-group plasmids could have played a role in the dissemination of the TEM beta-lactamase to pathogenic gram-negative bacteria.  相似文献   

16.
Replication of the multicopy mini-R1 plasmid, Rsc11, is dependent on host replication functions dna A, B, C, E and G but independent of polA1. Chloramphenicol immediately stops its replication. A stable relaxation complex is not formed. Composite plasmids were constructed with Rsc11 and other small replicons like pSC101, ColE1 and mini-ColE1. In all combinations the amount of hybrid plasmid DNA in the cell never exceeds the amount of Rsc11 DNA itself. This leads to varying copy numbers of the hybrid plasmids depending on the size of the second plasmid. Replication of the composite plasmids proceeds probably always under the control of the Rsc11 part although the second replicon is still functional. The composite plasmids are incompatible with both the parent replicons.  相似文献   

17.
The F11 receptor (F11R) (a.k.a. Junctional Adhesion Molecule, JAM) was first identified in human platelets as a 32/35 kDa protein duplex that serves as receptor for a functional monoclonal antibody that activates platelets. We have sequenced and cloned the F11R and determined that it is a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. The signaling pathways involved in F11R-induced platelet activation were examined in this investigation. The binding of M.Ab.F11 to the platelet F11R resulted in granule secretion and aggregation. These processes were found to be dependent on the crosslinking of F11R with the Fc gammaRII by M.Ab.F11. This crosslinking induced actin filament assembly with the conversion of discoidal platelets to activated shapes, leading to the formation of platelet aggregates. We demonstrate that platelet secretion and aggregation through the F11R involves actin filament assembly that is dependent on phosphoinositide-3 kinase activation, and inhibitable by wortmannin. Furthermore, such activation results in an increase in the level of free intracellular calcium, phosphorylation of the 32 and 35 kDa forms of the F11R, F11R dimerization coincident with a decrease in monomeric F11R, and association of the F11R with the integrin GPIIIa and with CD9. On the other hand, F11R-mediated events resulting from the binding of platelets to an immobilized surface of M.Ab.F11 lead to platelet adhesion and spreading through the development of filopodia and lammelipodia. These adhesive processes are induced directly by interaction of M.Ab.F11 with the platelet F11R and are not dependent on the Fc gammaRII. We also report here that the stimulation of the F11R in the presence of nonaggregating (subthreshold) concentrations of the physiological agonists thrombin and collagen, results in supersensitivity of platelets to natural agonists by a F11R-mediated process independent of the Fc gammaRII. The delineation of the two separate F11R-mediated pathways is anticipated to reveal significant information on the role of this cell adhesion molecule in platelet adhesion, aggregation and secretion, and F11R-dependent potentiation of agonist-induced platelet aggregation. The participation of F11R in the formation and growth of platelet aggregates and plaques in cardiovascular disorders, resulting in enhanced platelet adhesiveness and hyperaggregability, may serve in the generation of novel therapies in the treatment of inflammatory thrombosis, heart attack and stroke, and other cardiovascular disorders.  相似文献   

18.
The uptake of a homologous single-stranded fragment by superhelical DNA produces a complex that contains a stable displacement loop. When the circular DNA was relaxed by the random action of pancreatic DNAase, complexes dissociated by a process which requires that the single-stranded arm of the D-loop be intact. We attribute the dissociation to branch migration, the exchange of like strands at a branch point. The kinetics of dissociation were biphasic. A fraction of the nicked complexes dissociated in a few seconds, the rest dissociated much more slowly. The fraction of molecules that dissociated slowly was directly related to the length of the third strand, and inversely related to temperature. Salt also inhibited dissociation. Under physiological conditions, 37 °C and 0.15 m-NaCl, more than half of complexes containing a third strand of 1000-nucleotide residues survived for at least one minute. These observations provide a guide to handling certain natural or synthetic branched derivatives of DNA. Analyzing our data by the method of Thompson et al. (1976), we have estimated that the time for the exchange of one nucleotide for another at a single-stranded branch is 12 microseconds; but the calculated value depends strongly upon the assumption that single-strand branch migration occurs by a random walk.  相似文献   

19.
Plasminogen (Plgn) is usually activated by proteolysis of the Arg561-Val562 bond. The amino group of Val562 forms a salt-bridge with Asp740, which triggers a conformational change producing the active protease plasmin (Pm). In contrast, streptokinase (SK) binds to Plgn to produce an initial inactive complex (SK.Plgn) which subsequently rearranges to an active complex (SK.Plgn*) although the Arg561-Val562 bond remains intact. Therefore another residue must substitute for the amino group of Val562 and provide a counterion for Asp740 in this active complex. Two candidates for this counterion have been suggested: Ile1 of streptokinase and Lys698 of Plgn. We have investigated the reaction of SK mutants and variants of the protease domain of microplasminogen (muPlgn) in order to determine if either of these residues is the counterion. The mutation of Ile1 of SK decreases the activity of SK.Plgn* by 100-fold (Ile1Val) to >/= 104-fold (Ile1-->Ala, Gly, Trp or Lys). None of these mutations perturb the binding affinity of SK, which suggests that Ile1 is not required for formation of SK.Plgn but is necessary for SK.Plgn*. The substitution of Lys698 of muPlgn decreases the activity of SK.Plgn* by only 10-60-fold. In contrast with the Ile1 substitutions, the Lys698 mutations also decreased the dissociation constant of the SK complex by 15-50-fold. These observations suggest that Lys698 is involved in formation of the initial SK.Plgn complex. These results support the hypothesis that Ile1 provides the counterion for Asp740.  相似文献   

20.
S Taira  M Rhen 《FEBS letters》1989,257(2):274-278
The ability of intracellular growth is plasmid-dependent in Salmonella typhimurium. Only a small portion of this 96 kilobase pair plasmid appears essential for intracellular growth. The genetic organization of this region (the essential virulence determinant) was resolved. Fragments of the virulence determinant were cloned from the 96-kb plasmid pEX102 and transformed into minicell-producing E. coli. Plasmid-directed protein synthesis was investigated in metabolically labeled minicells. This analysis indicated the presence of at least four genes, mkaA, mkaB, mkaC and mkaD, within the virulence determinant encoding proteins of 70, 31, 30 and 29 kDa, respectively. The genes were positioned on the restriction map of the 96-kb virulence plasmid and the map locations confirmed by nucleotide sequence analysis of two new virulence genes (mkaB and mkaC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号