首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
AIM: To assess potential function of each two-component signal transduction system in the expression of Streptococcus mutans virulence properties. METHODS AND RESULTS: For each two-component system (TCS), the histidine kinase-encoding gene was inactivated by a polymerase chain reaction (PCR)-based deletion strategy and the effects of gene disruption on the cell's ability to form biofilms, become competent, and tolerate acid, osmotic, and oxidative stress conditions were tested. Our results demonstrated that none of the mutations were lethal for S. mutans. The TCS-2 (CiaRH) is involved in biofilm formation and tolerance to environmental stresses, the TCS-3 (ScnRK-like) participates in the survival of cells at acidic pH, and the TCS-9 affects the acid tolerance response and the process of streptococcal competence development. CONCLUSIONS: Our results confirmed the physiological role of the TCS in S. mutans cellular function, in particular the SncRK-like TCS and TCS-9 as they may represent new regulatory systems than can be involved in S. mutans pathogenesis. SIGNIFICANCE AND IMPACT OF THE STUDY: Multiple TCS govern important biological parameters of S. mutans enabling its survival and persistence in the biofilm community.  相似文献   

2.
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.  相似文献   

3.
In a previous study, a quorum-sensing signaling system essential for genetic competence in Streptococcus mutans was identified, characterized, and found to function optimally in biofilms (Li et al., J. Bacteriol. 183:897-908, 2001). Here, we demonstrate that this system also plays a role in the ability of S. mutans to initiate biofilm formation. To test this hypothesis, S. mutans wild-type strain NG8 and its knockout mutants defective in comC, comD, comE, and comX, as well as a comCDE deletion mutant, were assayed for their ability to initiate biofilm formation. The spatial distribution and architecture of the biofilms were examined by scanning electron microscopy and confocal scanning laser microscopy. The results showed that inactivation of any of the individual genes under study resulted in the formation of an abnormal biofilm. The comC mutant, unable to produce or secrete a competence-stimulating peptide (CSP), formed biofilms with altered architecture, whereas the comD and comE mutants, which were defective in sensing and responding to the CSP, formed biofilms with reduced biomass. Exogenous addition of the CSP and complementation with a plasmid containing the wild-type comC gene into the cultures restored the wild-type biofilm architecture of comC mutants but showed no effect on the comD, comE, or comX mutant biofilms. The fact that biofilms formed by comC mutants differed from the comD, comE, and comX mutant biofilms suggested that multiple signal transduction pathways were affected by CSP. Addition of synthetic CSP into the culture medium or introduction of the wild-type comC gene on a shuttle vector into the comCDE deletion mutant partially restored the wild-type biofilm architecture and further supported this idea. We conclude that the quorum-sensing signaling system essential for genetic competence in S. mutans is important for the formation of biofilms by this gram-positive organism.  相似文献   

4.
Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation   总被引:7,自引:0,他引:7  
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.  相似文献   

5.
Khan AU  Islam B  Khan SN  Akram M 《Bioinformation》2011,5(10):440-445
Biofilm formation by Streptococcus mutans is considered as its principal virulence factor, causing dental caries. Mutants of S. mutans defective in biofilm formation were generated and analyzed to study the collective role of proteins in its formation. Mutants were characterized on the basis of adherence to saliva-coated surface, and biofilm formation. The confocal laser microscopy and scanning electron microscopy images showed that the control biofilms had cluster of cells covered by layer of exo-polysaccharide while the biofilms of mutants were thin and spaced. Two-dimensional protein electrophoresis data analysis identified 57 proteins that are either up (44 proteins) or down (13 proteins) regulated. These data points to the importance of up and down regulated proteins in the formation of biofilm in Streptococcus mutans.  相似文献   

6.
Streptococcus mutans is considered one of the main causative agents of human dental caries. Cell-cell communication through two-component signal transduction systems (TCSTS) plays an important role in the pathogenesis of S. mutans. One of the S. mutans TCSTS, ComDE, controls both competence development and biofilm formation. In this study, we showed that addition of exogenous competence-stimulating peptide (CSP) beyond the levels necessary for competence inhibited the growth of S. mutans in a ComDE-dependent manner. We also demonstrated that further increases of CSP stopped S. mutans cell division leading to cell death. Use of CSP as a possible therapeutic agent is discussed.  相似文献   

7.
Streptococcus mutans has at least six pairs of open reading frames that are homologous to bacterial two-component regulatory systems. Putative response regulators from five out of six of these pairs were successfully mutated by insertion of a kanamycin resistance marker and the effects of inactivation of the genes on the ability of the cells to form biofilms in an in vitro model were assessed. Disruption of the response regulators of four systems had no effect on biofilm formation, whereas disruption of one response regulator caused a substantial decrease in biofilm formation as compared to the wild-type S. mutans.  相似文献   

8.
构建猪链球菌2型(Streptococcus suis type 2)强毒株05ZYH33二元信号转导系统2148hk/rr基因敲除突变体.构建中间为壮观霉素抗性基因,两侧为2148hk/rr编码基因上、下游同源序列的基因敲除质粒,通过同源重组筛选2148hk/rr编码基因敲除突变体.PCR分析和Southern杂交结果均显示2148hk/rr编码基因完全被壮观霉素抗性基因替代,基因敲除突变体构建成功.筛选获得05ZYH33二元信号转导系统2148hk/rr基因敲除突变体,为阐明该调控系统在猪链球菌致病过程中的作用奠定了基础.  相似文献   

9.
构建猪链球菌2型(Streptococcus suis type 2)强毒株05ZYH33二元信号转导系统2148hk/rr基因敲除突变体。构建中间为壮观霉素抗性基因, 两侧为2148hk/rr编码基因上、下游同源序列的基因敲除质粒, 通过同源重组筛选2148hk/rr编码基因敲除突变体。PCR分析和Southern杂交结果均显示2148hk/rr编码基因完全被壮观霉素抗性基因替代, 基因敲除突变体构建成功。筛选获得05ZYH33二元信号转导系统2148hk/rr基因敲除突变体, 为阐明该调控系统在猪链球菌致病过程中的作用奠定了基础。  相似文献   

10.
11.
Bacteria exposed to transient host environments can elicit adaptive responses by triggering the differential expression of genes via two-component signal transduction systems. This study describes the vicRK signal transduction system in Streptococcus mutans. A vicK (putative histidine kinase) deletion mutant (SmuvicK) was isolated. However, a vicR (putative response regulator) null mutation was apparently lethal, since the only transformants isolated after attempted mutagenesis overexpressed all three genes in the vicRKX operon (Smuvic+). Compared with the wild-type UA159 strain, both mutants formed aberrant biofilms. Moreover, the vicK mutant biofilm formed in sucrose-supplemented medium was easily detachable relative to that of the parent. The rate of total dextran formation by this mutant was remarkably reduced compared to the wild type, whereas it was increased in Smuvic+. Based on real-time PCR, Smuvic+ showed increased gtfBCD, gbpB, and ftf expression, while a recombinant VicR fusion protein was shown to bind the promoter regions of the gtfB, gtfC, and ftf genes. Also, transformation efficiency in the presence or absence of the S. mutans competence-stimulating peptide was altered for the vic mutants. In vivo studies conducted using SmuvicK in a specific-pathogen-free rat model resulted in significantly increased smooth-surface dental plaque (Pearson-Filon statistic [PF], <0.001). While the absence of vicK did not alter the incidence of caries, a significant reduction in SmuvicK CFU counts was observed in plaque samples relative to that of the parent (PF, <0.001). Taken together, these findings support involvement of the vicRK signal transduction system in regulating several important physiological processes in S. mutans.  相似文献   

12.
Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.  相似文献   

13.
14.
Ahn SJ  Burne RA 《Journal of bacteriology》2007,189(17):6293-6302
The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.  相似文献   

15.
Streptococcus mutans is a bacterium that has evolved to be dependent upon a biofilm "lifestyle" for survival and persistence in its natural ecosystem, dental plaque. We initiated this study to identify the genes involved in the development of genetic competence in S. mutans and to assay the natural genetic transformability of biofilm-grown cells. Using genomic analyses, we identified a quorum-sensing peptide pheromone signaling system similar to those previously found in other streptococci. The genetic locus of this system comprises three genes, comC, comD, and comE, that encode a precursor to the peptide competence factor, a histidine kinase, and a response regulator, respectively. We deduced the sequence of comC and its active pheromone product and chemically synthesized the corresponding 21-amino-acid competence-stimulating peptide (CSP). Addition of CSP to noncompetent cells facilitated increased transformation frequencies, with typically 1% of the total cell population transformed. To further confirm the roles of these genes in genetic competence, we inactivated them by insertion-duplication mutagenesis or allelic replacement followed by assays of transformation efficiency. We also demonstrated that biofilm-grown S. mutans cells were transformed at a rate 10- to 600-fold higher than planktonic S. mutans cells. Donor DNA included a suicide plasmid, S. mutans chromosomal DNA harboring a heterologous erythromycin resistance gene, and a replicative plasmid. The cells were optimally transformed during the formation of 8- to 16-h-old biofilms primarily consisting of microcolonies on solid surfaces. We also found that dead cells in the biofilms could act as donors of a chromosomally encoded antibiotic resistance determinant. This work demonstrated that a peptide pheromone system controls genetic competence in S. mutans and that the system functions optimally when the cells are living in actively growing biofilms.  相似文献   

16.
17.
Carolacton, a secondary metabolite isolated from the myxobacterium Sorangium cellulosum, disturbs Streptococcus mutans biofilm viability at nanomolar concentrations. Here we show that carolacton causes leakage of cytoplasmic content (DNA and proteins) in growing cells at low pH and provide quantitative data on the membrane damage. Furthermore, we demonstrate that the biofilm-specific activity of carolacton is due to the strong acidification occurring during biofilm growth. The chemical conversion of the ketocarbonic function of the molecule to a carolacton methylester did not impact its activity, indicating that carolacton is not functionally activated at low pH by a change of its net charge. A comparative time series microarray analysis identified the VicKRX and ComDE two-component signal transduction systems and genes involved in cell wall metabolism as playing essential roles in the response to carolacton treatment. A sensitivity testing of mutants with deletions of all 13 viable histidine kinases and the serine/threonine protein kinase PknB of S. mutans identified only the ΔpknB deletion mutant as being insensitive to carolacton treatment. A strong overlap between the regulon of PknB in S. mutans and the genes affected by carolacton treatment was found. The data suggest that carolacton acts by interfering with PknB-mediated signaling in growing cells. The resulting altered cell wall morphology causes membrane damage and cell death at low pH.  相似文献   

18.
AIMS: We determined the effect of xanthorrhizol (XTZ) purified from the rhizome of Curcuma xanthorrhiza Roxb. on the Streptococcus mutans biofilms in vitro. METHODS AND RESULTS: The biofilms of S. mutans at different phases of growth were exposed to XTZ at different concentrations (5, 10 and 50 micromol l(-1)) and for different time exposures (1, 10, 30 and 60 min). The results demonstrated that the activity of XTZ in removing S. mutans biofilm was dependent on the concentration, exposure time and the phase growth of biofilm. A concentration of 5 micromol l(-1) of XTZ completely inhibited biofilm formation by S. mutans at adherent phases of growth, whereas 50 micromol l(-1) of XTZ removed 76% of biofilm at plateau accumulated phase when exposed to S. mutans biofilm for 60 min. CONCLUSIONS: Xanthorrhizol isolated from an edible plant (C. xanthorrhiza Roxb.) shows promise as an antibacterial agent for inhibiting and removing S. mutans biofilms in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: XTZ could be used as a potential antibacterial agent against biofilm formation by S. mutans.  相似文献   

19.
20.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxS(Sm)) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号