首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
大叶相思的结瘤固氮和吸氢酶活性   总被引:3,自引:0,他引:3  
  相似文献   

2.
台湾相思的根系具有多年生的根瘤,根瘤初发生时球状,以后发育成分叉瘤和扇状瘤。根瘤固氮活性因苗龄、成熟度不同而有明显差异。环境条件影响结瘤及固氮活性。15℃时结瘤受到明显抑制,固氮作用最适温度条件是25~30℃。光照不足降低根瘤固氮活性。短期轻度干旱不影响根瘤固氮活性,但持续干旱使固氮活性明显下降。pH4.5~8.5条件能正常结瘤,pH5.5时结瘤最好。根瘤固氮作用时不释放H_2,具有较高的吸氢酶活性,在固氮反应系统中加入5%的H_2,能提高根瘤固氮活性。  相似文献   

3.
台湾相思结瘤固氮与吸氢酶活性研究   总被引:4,自引:0,他引:4  
  相似文献   

4.
羊奶果不同发育阶段根瘤的细胞结构及固氮、吸氢活性   总被引:1,自引:0,他引:1  
比较羊奶果根瘤三个不同发育阶段的显微,亚显微结构和固氮,吸氢活性的差异。探讨了根瘤结构与功能的关系。结果表明:早期侵染方式为皮层细胞间隙侵染,此期的内生菌是一种分枝,具隔膜的菌丝体,早期侵染细胞有脂体存在。成熟根瘤含菌细胞明显多于幼瘤和衰老瘤。成熟根瘤具有大量泡囊,成熟泡囊具分隔,双层壁结构。衰老瘤泡囊分隔消失,不呈双层壁结构。成熟根瘤的固氮,吸氢活性明显高于幼瘤和衰老瘤。  相似文献   

5.
大叶相思(Acacia auriculaeformis)和马占相思(A...   总被引:3,自引:0,他引:3  
丁明懋  蚁伟民 《生态学报》1991,11(3):289-290
  相似文献   

6.
铜对大叶相思-根瘤菌共生固氮体系的影响   总被引:11,自引:0,他引:11  
报道了两种根瘤菌 (大叶相思、美丽胡枝子 )对Cu2 + 的耐受性以及植物 根瘤菌共生固氮体系在Cu2 + 胁迫下结瘤、固氮和生长的变化 ,讨论了大叶相思在矿山尾矿废弃地作为先锋植物结瘤固氮的可能性 .结果表明 ,大叶相思根瘤菌对Cu2 + 离子的耐受性较强 ,可以耐受Cu2 + <0 80mmol的离子浓度 ,Cu2 +对它的半致死浓度为 0 12 9mmol.在无菌砂培无重金属影响条件下 ,其固氮酶活性为 2 7C2 H4 ·μg·g-1·h-1,当Cu2 + >0 12 5mmol会导致大叶相思固氮酶活性急剧下降 ,其有效半抑制浓度 (EC50 )为0 15 1mmol,Cu2 + 为 0 5 0mmol完色抑制大叶相思固氮酶活性 ,不阻碍结瘤 ,但严重抑制植物生长发育 ,引起植物叶片白化、植株矮化 .在外加N源不接菌和不加N源接菌两种处理组间 ,Cu2 + <0 12 5mmol时 ,以不加N接菌处理对大叶相思生长有利 .大叶相思对Cu2 + 吸收积累根部高于地上组织 .  相似文献   

7.
田菁结瘤固氮特性研究   总被引:1,自引:0,他引:1  
果园套种田菁作夏季绿肥,出苗10~15天即有根瘤出现,主根和各级侧根都可能结瘤,根瘤数量较多,每亩可达30公斤以上。营养生长期根瘤固氮酶活性较高;花果期由于部分根瘤衰败,固氮活性明显降低。土壤干旱降低田菁根瘤的含水量和固氮活性。田菁根瘤在25℃时固氮活性最高,12℃以下或35℃以上固氮活性急剧下降。营养生长期每亩田菁每天干均可固氮76克,若在苗龄100天时翻埋,可固氮7.6公斤,折合硫酸铵36.2公斤。  相似文献   

8.
生态条件对马占相思结瘤固氮的影响   总被引:14,自引:3,他引:14  
本文研究了马占相思(Acaciamangium)结瘤固氮和生态条件的关系.结果显示.马占相思根瘤固氮活性的昼夜变化与固氮能源的供给有关,它受光、温影响较大,固氮活性昼夜变化的范围为1—5μmolC2H4·g-1freshnoduleh-1。固氮活性的季节性差异也很明显,且与温、湿度的变化关系密切,在温、湿度较好的5月—10月.固氮活性较高.为3—10μmolC2H4·g-1freshnoduleh-1.冬春的干旱和低温会影响根瘤的生长和存活.造成固氮活性降低甚至失去活性.不同年份和林地的根瘤生物量为104—625kg·ha-1,以幼林期根瘤生物量较高.多数样地的根瘤生物量在300hg·ha-1以上.随着森林生态系统的发展.根系往土层深处生长以及林下草本和灌木层的增长等原因,根瘤生物量会受影响而有所下降。施肥松土能提高根瘤生物量57—344kg·ha-1,对增加固氮量有重大意义。  相似文献   

9.
气候因子对三种豆科树种固氮的影响   总被引:1,自引:0,他引:1  
研究了气候因子对台湾相思(Acacia confusa)、大叶相思(A.awriculaeformis)和南岭黄檀(Dalbergia balansae)根瘤固氮酶和吸氢酶活性的影响。3种树木根瘤均具有吸氢酶活性,外源H:可提高固氮酶活性,表明吸氢酶有助于固氮效率的提高。3树种根瘤的固氮活性有明显季节变化,夏秋活性较高,早春及冬季活性较低。离体根瘤固氮和吸H2活性表达的最适温度为25—30℃。光照强度及土壤湿度均显著影响根瘤固氮和吸H2活性。  相似文献   

10.
新疆干旱区豆科植物结瘤的固氮特性   总被引:2,自引:0,他引:2  
调查了新疆干旱区72种豆科植物的结瘤固氮活性,其中33种尚未见报道。这些植物所结根瘤在外形上多数不规则,以皮层厚和白色、棕色者居多,与非干旱区的根瘤形态显著不同。根瘤固氮活力相差较大,但比一般豆科植物根瘤活性高,最高者可达当地大豆根瘤的42倍。根瘤活性与宿主的抗逆境能力有关。此外,从11种豆科植物根瘤观察到10种具有吸氢活性。对干旱区豆科共生固氮生理生态的特性进行了讨论。  相似文献   

11.
 分布在南亚热带金沙江干热河谷的攀枝花苏铁,普遍受蓝细菌侵染形成特殊的多级分枝珊瑚状根瘤簇。当年生树苗活瘤重可达8克/株,100年生370克/株。固氮活性在秋季一般为1.8—11.1μmol C2H4/g·f·w·h-1,它明显受光照和湿度影响,昼夜动态是白天活性明显比夜间高。苏铁固氮量从0.64—18.69毫克/株·小时,它在生态系统的氮循环中起良好作用。  相似文献   

12.
磁场对大豆共生固氮的效应   总被引:1,自引:0,他引:1  
恒定磁场处理慢生大豆根瘤菌“005”和接种后的大豆植株,发现磁场可以提高根瘤的固氮活性。在一定的磁场强度(70—100mT)下,固氮活性平均可以提高4—5倍,植株的结瘤数和根瘤重量平均提高2—3倍。从这样的根瘤中所分离出的根瘤菌,由慢生型转变成快生型,在100植株中有17株的根瘤分离出快生菌。生长世代时间和培养溶液中的pH值与慢生型不同,而与快生型相同。  相似文献   

13.
自生条件下,测定准噶尔盆地南部的68株根瘤菌吸氢活力,获得一株Hup~+的冬箭筈豌豆根瘤菌C_(48)。经与紫云英根瘤菌株109及89比较,两者氢酶表达的最适pH相同;温度分别以20或30℃为宜;Ni~(2+)显著促进吸氢表达,但C_(48)还受Co~(2+ )、Mg~(2+)、Cu~(2+)的促进;紫云英根瘤菌的氨酶表达受碳水化合物抑制较冬箭筈豌豆根瘤菌明显。此外,自生条件下生长的Hup—菌株,经与宿主共生后,Hup~+的百分率大为增加。  相似文献   

14.
利用紫色非硫细菌能在厌气光照下和好气黑暗下交替生长的特点和同位素~(99)Mo示踪,来探讨Rhodopseudomonas capsulata中Mo的积累与固氮酶合成的关系。 用硫酸铵和谷氨酸盐作为氮源,把Rps. capsulata置于厌气光照下生长。由于硫酸铵阻遏固氮酶,所以菌体内既无固氮酶活性也无~(99)Mo积累。而谷氨酸盐解遏固氮酶的合成,菌体则显示固氮活性并有~(99)Mo积累。 黑暗好气生长的Rps. capsulata菌体既无固氮活性,也没有~(99)Mo的积累。将这样的菌体转移到含~(99)Mo(无谷氨酸)的培养液进行光照,固氮酶活性迅速出现,同时有~(99)Mo的积累。在Rps. capsulata中钼的吸收与固氮酶的合成及活性是紧密偶联的。  相似文献   

15.
南方水稻氮素吸收与利用效率的基因型差异及评价   总被引:79,自引:0,他引:79       下载免费PDF全文
 以南方籼型水稻(Oryza sativa)品种为试验材料进行大田试验,以探讨提高水稻氮素吸收与利用效率的基因型潜力。结果表明,除早季分蘖期氮素积累量、干物质生产效率和抽穗期氮素积累量以及晚季氮素运转效率外,各基因型氮素吸收与利用效率存在显著或极显著的差异,提高水稻氮素吸收与利用效率的基因型潜力很大。基因型生育期对其氮素吸收与利用效率产生重要影响,生育期较长的基因型其氮素吸收效率、稻谷和干物质生产效率以及农艺效率较高。杂交稻氮素的生产效率、农艺效率、回收效率和收获指数较常规稻高,但二系杂交稻并没有比三系杂交稻明显提高。通过排序方式对各基因型氮素吸收与利用效率进行评价的结果表明,不同氮素吸收与利用效率指标的排序以及同一指标早晚季的排序均存在较大差异。氮素吸收与利用效率经标准化后的综合排序可对各基因型的氮素吸收与利用效率进行综合评价,吻合系数则可较好地反映各基因型早晚季氮素吸收与利用效率的排序。  相似文献   

16.
分子氮和二氧化碳对蓝藻Anabaena 7120固氮的抑制作用可因反应系统中pH值的提高以及对蓝藻进行预照光处理而削弱或消除。分子氢对经预照光处理的蓝藻固氮活性不但不支持,且有削弱。预暗处理的效应恰好相反。蓝藻经低温(4℃)预处理后,分子氢对其固氮活性支持减弱,甚至抑制。蓝藻放氢对分子氢和同化力水平的反应规律在趋势上与固氮基本相同。  相似文献   

17.
根瘤细胞早期发育阶段,以宿主细胞器和根瘤菌转化类菌体的数量增多为特征。随后类菌体增殖到填满宿主细胞内的大部分区域。各个类菌体周膜内含有1至几个类菌体。晚期共生发育阶段,类菌体细胞结构和宿主细胞器数量发生了变化。文中还讨论了根瘤的共生固氮作用。  相似文献   

18.
CO_2倍增对紫花苜蓿碳、氮同化与分配的影响   总被引:6,自引:0,他引:6  
本文简要报道CO2倍增下紫花苜蓿碳素积累、氮素的吸收与生物固氮及其产物在地上、地下部分配的特性1 材料和方法在北京香山中国科学院植物研究所植物园试验区,建立了两个高2.8m、直径2.2m的钢管支撑的圆柱状开顶式薄膜培养室,由底部向室内连续通气,保证培养室内每分钟换气3次。对照室通入正常空气(350×10-6,1×CO2),处理室通入CO2加倍的空气(700×10-6,2×CO2)。室内CO2浓度经红外CO2分析仪(QGD-07型,北京分析仪器厂产品)测定,24h内均可保持在350×10-6及70…  相似文献   

19.
Diazotrophic cyanobacteria can take up combined nitrogen (nitrate, ammonium, amino acids, dissolved organic nitrogen) from solution, but the interaction between N2 fixation and uptake of combined nitrogen is not well understood. We studied the effects of combined nitrogen ) additions on N2 fixation rates in the cyanobacterium Trichodesmium erythraeum (IMS‐101) maintained in continuous culture in an N‐free medium (YBCII) and a 12:12‐h light:dark cycle. We measured acetylene reduction rates, nutrient concentrations, and biomass throughout the 12 h of illumination after the addition of nitrate (0.5–20 μM) at the start of the light period. Compared with unamended controls, Trichodesmium showed strong inhibition of acetylene reduction (up to 70%) in the presence of , with apparent saturation of the inhibition effect at an initial concentration of approximately 10 μM. The inhibition of acetylene reduction persisted through much of the light period as concentration in the culture vessel decreased. Recovery of N2 fixation was observed late in the light period in cultures amended with low concentrations of (<5 μM) when ambient concentrations had decreased to 0.3–0.4 μM in the culture vessel. Nitrate uptake accounted for as much as 86% of total N uptake and, at the higher treatment concentrations, more than made up for the observed decrease in N2 fixation rates. We conclude that Trichodesmium can obtain significant quantities of N through uptake of nitrate and does so in preference to N2 fixation when sufficient is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号