首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.  相似文献   

2.
3.
A collection of nitrile-hydrolysing rhodococci was isolated from sediments sampled from a range of deep coastal, and abyssal and hadal trench sites in the NW Pacific Ocean, as part of our programme on the diversity of marine actinomycetes. Nitrile-hydrolysing strains were obtained by batch enrichments on nitrile substrates with or without dispersion and differential centrifugation pre-treatment of sediments, and were recovered from all of the depths sampled (approximately 1100–6500 m). Two isolates obtained from the Ryukyu (5425 m) and Japan (6475 m) Trenches, and identified as strains of Rhodococcus erythropolis,were chosen for detailed study. Both of the deep-sea isolates grew at in situ temperature (4°C), salinities (0–4% NaCl) and pressures (40–60 MPa), results that suggest, but do not prove, that they may be indigenous marine bacteria. However, the absence of culturable Thermoactinomycespoints to little or no run off of terrestrial microbiota into these particular trench sediments. Nitrile-hydrolysis by these rhodococci was catalysed by a nitrile hydratase–amidase system. The hydratase accommodated aliphatic, aromatic and dinitrile substrates, and enabled growth to occur on a much wider range of nitriles than the only other reported marine nitrile-hydrolysing R. erythropolis which was isolated from coastal sediments. Also unlike the latter strain, the nitrile hydratases of the deep-sea rhodococci were constitutive. The possession of novel growth and enzyme activities on nitriles by these deep-sea R. erythropolisstrains recommends their further development as industrial biocatalysts.  相似文献   

4.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

5.
Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-fossilized taxa. Here, we recover aDNA of eukaryotic origin across four cores collected at abyssal depths in the South Atlantic, in up to 32.5 thousand-year-old sediment layers. Our study focuses on Foraminifera and Radiolaria, two major groups of marine microfossils also comprising diverse non-fossilized taxa. We describe their assemblages in down-core sediment layers applying both micropalaeontological and environmental DNA sequencing approaches. Short fragments of the foraminiferal and radiolarian small subunit rRNA gene recovered from sedimentary DNA extracts provide evidence that eukaryotic aDNA is preserved in deep-sea sediments encompassing the last glacial maximum. Most aDNA were assigned to non-fossilized taxa that also dominate in molecular studies of modern environments. Our study reveals the potential of aDNA to better document the evolution of past marine ecosystems and opens new horizons for the development of deep-sea palaeogenomics.  相似文献   

6.
In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.  相似文献   

7.
Three distinct physiological types of sulfur-oxidizing bacteria were enriched and isolated from samples collected at several deep-sea hydrothermal vents (2,550 m) of the Galapagos Rift ocean floor spreading center. Twelve strains of the obligately chemolithotrophic genus Thiomicrospira were obtained from venting water and from microbial mats covering surfaces in the immediate vicinity of the vents. From these and other sources two types of obligately heterotrophic sulfur oxidizers were repeatedly isolated that presumably oxidized thiosulfate either to sulfate (acid producing; 9 strains) or to polythionates (base producing; 74 strains). The former were thiobacilli-like, exhibiting a thiosulfate-stimulated increase in growth and CO2 incorporation, whereas the latter were similar to previously encountered pseudomonad-like heterotrophs. The presence of chemolithotrophic sulfur-oxidizing bacteria in the sulfide-containing hydrothermal water supports the hypothesis that chemosynthesis provides a substantial primary food source for the rich populations of invertebrates found in the immediate vicinity of the vents.  相似文献   

8.
In order to characterize the phylogenetic relationship and deep-sea adaptation process of the deep-sea fish genus Coryphaenoides, the nucleotide sequences of the mitochondrial (mt) 12 S rRNA and COI gene sequences for seven Coryphaenoides species were analyzed. Our molecular phylogenetic tree shows a new arrangement of seven Coryphaenoides species, which form two distinct groups, abyssal and nonabyssal species, and differs from the results of previous taxonomic studies. Using the mutation rate of mitochondrial genes, the divergence time between abyssal and nonabyssal Coryphaenoides was found to be 3.2-7.6 million years ago. Our study suggests that hydraulic pressure plays an important role in the speciation process in the marine environment.  相似文献   

9.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

10.
Cao H  Hong Y  Li M  Gu JD 《Microbial ecology》2011,62(4):813-823
The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.  相似文献   

11.
Symbiotic diversity in marine animals: the art of harnessing chemosynthesis   总被引:1,自引:0,他引:1  
Chemosynthetic symbioses between bacteria and marine invertebrates were discovered 30 years ago at hydrothermal vents on the Galapagos Rift. Remarkably, it took the discovery of these symbioses in the deep sea for scientists to realize that chemosynthetic symbioses occur worldwide in a wide range of habitats, including cold seeps, whale and wood falls, shallow-water coastal sediments and continental margins. The evolutionary success of these symbioses is evident from the wide range of animal groups that have established associations with chemosynthetic bacteria; at least seven animal phyla are known to host these symbionts. The diversity of the bacterial symbionts is equally high, and phylogenetic analyses have shown that these associations have evolved on multiple occasions by convergent evolution. This Review focuses on the diversity of chemosynthetic symbionts and their hosts, and examines the traits that have resulted in their evolutionary success.  相似文献   

12.
Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees'' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions.  相似文献   

13.
H. K. Do  K. Kogure    U. Simidu 《Applied microbiology》1990,56(4):1162-1163
Forty-nine bacterial strains were isolated from deep-sea sediments. Among them, 22 strains were shown by the tissue culture assay method to produce sodium channel blockers. For some strains, high-performance liquid chromatography analysis confirmed that the blocker was tetrodotoxin. Tetrodotoxin-producing bacteria seem to be widespread in marine sediment.  相似文献   

14.
Halomonas variabilis and phylogenetically related organisms were isolated from various habitats such as Antarctic terrain and saline ponds, deep-sea sediment, deep-sea waters affected by hydrothermal plumes, and hydrothermal vent fluids. Ten strains were selected for physiological and phylogenetic characterization in detail. All of those strains were found to be piezotolerant and psychrotolerant, as well as euryhaline halophilic or halotolerant. Their stress tolerance may facilitate their wide occurrence, even in so-called extreme environments. The 16S rDNA-based phylogenetic relationship was complemented by analyses of the DNA gyrase subunit B gene (gyrB) and genes involved in the synthesis of the major compatible solute, ectoine: diaminobutyric acid aminotransferase gene (ectB) and ectoine synthase gene (ectC). The phylogenetic relationships of H. variabilis and related organisms were very similar in terms of 16S rDNA, gyrB, and ectB. The ectC-based tree was inconsistent with the other phylogenetic trees. For that reason, ectC was inferred to derive from horizontal transfer.  相似文献   

15.
We report the successful cultivation and partial characterization of novel members of epsilon-Proteobacteria, which have long been recognized solely as genetic signatures of small subunit ribosomal RNA genes (rDNA) from a variety of habitats occurring in deep-sea hydrothermal fields. A newly designed microhabitat designated 'in situ colonization system' was used for enrichment. Based on phylogenetic analysis of the rDNA of the isolates, most of these represent the first cultivated members harboring previously uncultivated phylotypes classified into the Uncultivated epsilon-Proteobacteria Groups A, B, F and G, as well as some novel members of Group D. Preliminary characterization of the isolates indicates that all are mesophilic or thermophilic chemolithoautotrophs using H(2) or reduced sulfur compounds (elemental sulfur or thiosulfate) as an electron donor and O(2), nitrate or elemental sulfur as an electron acceptor. The successful cultivation will enable the subsequent characterization of physiological properties and ecological impacts of a diversity of epsilon-Proteobacteria in the deep-sea hydrothermal environments.  相似文献   

16.
Three Clostridium strains were isolated from deep-sea sediments collected at a depth of 6.3–7.3 km in the Japan Trench. Physiological characterization and 16S rDNA analysis revealed that the three isolates were all closely related to Clostridium bifermentans. The spores of all three isolates were resistant to inactivation at high pressure and low temperature. However, despite the fact that the vegetative cells were halotolerant and eurythermal they did not appear to be adapted for growth or viability under the conditions prevailing in the deep-sea sediments from which they were obtained. The results suggest that the isolates had survived as spores in the deep-sea sediments and that the marine benthos could be a source of clostridia originating in other environments.Communicated by K. Horikoshi  相似文献   

17.
Sulphate reduction in oxic and sub-oxic North-East Atlantic sediments   总被引:3,自引:0,他引:3  
Abstract Oxic and sub-oxic N.-E. Atlantic sediments were examined for sulphate-reducing activity. Oxygen and/or nitrate reduction are probably the dominant mineralisation processes in the abyssal plain sediment studied. A low rate of sulphate reduction (0.1 nmol SO2−4/ml/day) was recorded in the surface 5 cm of the continental slope sediment, together with the presence of a range of sulphate-reducing bacteria (SRB). A higher activity of sulphate reduction (2.2 nmol SO2−4/ml/day) occurred in the continental shelf sediment which led to a small decrease in pore water sulphate and an increase in titration alkalinity. This sediment contained approx. 102–103 acetate, lactate and propionate oxidising SRB/ml. No low- M r organic acids were detected in these sediments. However, amendment with 75 μM acetate stimulated sulphate-reducing activity in the shelf sediment.  相似文献   

18.
Novel rhodococci and other mycolate actinomycetes from the deep sea   总被引:8,自引:0,他引:8  
A large number of mycolate actinomycetes have been recovered from deep-sea sediments in the NW Pacific Ocean using selective isolation methods. The isolates were putatively assigned to the genus Rhodococcus on the basis of colony characteristics and mycolic acid profiles. The diversity among these isolates and their relationship to type strains of Rhodococcus and other mycolate taxa were assessed by Curie point pyrolysis mass spectrometry (PyMS). Three major (A, C, D) and two minor (B, E) groups were defined by PyMS. Cluster A was a large group of isolates recovered from sediment in the Izu Bonin Trench (2679 m); Cluster C comprised isolates from both the Izu Bonin Trench (6390 and 6499 m) and from the Japan Trench (4418, 6048 and 6455 m). These Cluster C isolates showed close similarity to Dietzia maris and this was subsequently confirmed using molecular methods. Cluster D contained isolates recovered from a sediment taken from a depth of 1168m in Sagami Bay and were identified as members of the terrestrial species Rhodococcus luteus. Clusters B and E had close affinities with members of the genera Gordonia and Mycobacterium. The presence of Thermoactinomyces in certain of the deep-sea sediments studied was indicative of the movement of terrestrial material into the ocean depths.16S ribosomal RNA gene sequence analyses produced excellent definition of most genera of the mycolata, and indicated that the among the deep sea isolates (1) were novel species of Corynebacterium, Gordonia and Mycobacterium, and (2) a Sea of Japan isolate the phylogenetic depth of which suggests the possibility of a new genus. Polyphasic taxonomic analysis revealed considerable diversity among the deep sea rhodococci and evidence for recently diverged species or DNA groups.  相似文献   

19.
The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.  相似文献   

20.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号