首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain goal-directed behaviors depend upon interactions between basolateral amygdala (ABL) and orbitofrontal cortex (OFC). Here we describe neurophysiological evidence of this cooperative function. We recorded from ABL in intact and OFC-lesioned rats during learning of odor discrimination problems and reversals. During learning, rats with ipsilateral OFC lesions exhibited a marked decline in the proportion of ABL neurons that fired differentially during cue sampling both before and after reversal and in the proportion of neurons that reversed odor preference when the odor-outcome associations were reversed. This decline appeared to reflect a loss of rapid flexibility in cue selectivity that characterized activity in intact rats. In addition, lesioned rats had fewer neurons that fired in anticipation of the predicted outcome during a delay period after responding but before outcome delivery. These findings support a role for OFC in facilitating the encoding of information about expected outcomes in ABL.  相似文献   

2.
Li W  Luxenberg E  Parrish T  Gottfried JA 《Neuron》2006,52(6):1097-1108
It is widely presumed that odor quality is a direct outcome of odorant structure, but human studies indicate that molecular knowledge of an odorant is not always sufficient to predict odor quality. Indeed, the same olfactory input may generate different odor percepts depending on prior learning and experience. Combining functional magnetic resonance imaging with an olfactory paradigm of perceptual learning, we examined how sensory experience modifies odor perception and odor quality coding in the human brain. Prolonged exposure to a target odorant enhanced perceptual differentiation for odorants related in odor quality or functional group, an effect that was paralleled by learning-induced response increases in piriform cortex and orbitofrontal cortex (OFC). Critically, the magnitude of OFC activation predicted subsequent improvement in behavioral differentiation. Our findings suggest that neural representations of odor quality can be rapidly updated through mere perceptual experience, a mechanism that may underlie the development of odor perception.  相似文献   

3.
Representation of spatial goals in rat orbitofrontal cortex   总被引:4,自引:0,他引:4  
The orbitofrontal cortex (OFC) is thought to participate in making and evaluating goal-directed decisions. In rodents, spatial navigation is a major mode of goal-directed behavior, and anatomical and lesion studies implicate the OFC in spatial processing, but there is little direct evidence for coding of spatial or motor variables. Here, we recorded from ventrolateral and lateral OFC in an odor-cued two-alternative choice task requiring orientation and approach to spatial goal ports. In this context, over half of OFC neurons encoded choice direction or goal port location. A subset of neurons was jointly selective for the trial outcome and port location, information useful for the selection or evaluation of spatial goals. These observations show that the rodent OFC not only encodes information relating to general motivational significance, as shown previously, but also encodes spatiomotor variables needed to define specific behavioral goals and the locomotor actions required to attain them.  相似文献   

4.
The orbitofrontal cortex (OFC) and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.  相似文献   

5.
Damage to orbitofrontal cortex (OFC) has long been associated with deficits in reversal learning. OFC damage also causes inflexible associative encoding in basolateral amygdala (ABL) during reversal learning. Here we provide a critical test of the hypothesis that the reversal deficit in OFC-lesioned rats is caused by this inflexible encoding in ABL. Rats with bilateral neurotoxic lesions of OFC, ABL, or both areas were tested on a series of two-odor go/no-go discrimination problems, followed by two serial reversals of the final problem. As expected, all groups acquired the initial problems at the same rate, and rats with OFC lesions were slower to acquire the reversals than sham controls. This impairment was abolished by accompanying ABL lesions, while ABL lesions alone had no effect on reversal learning. These results are consistent with the hypothesis that OFC facilitates cognitive flexibility by promoting updating of associative encoding in downstream brain areas.  相似文献   

6.
Morrison SE  Saez A  Lau B  Salzman CD 《Neuron》2011,71(6):1127-1140
The orbitofrontal cortex (OFC) and amygdala are thought to participate in reversal learning, a process in which cue-outcome associations are switched. However, current theories disagree on whether OFC directs reversal learning in the amygdala. Here, we show that during reversal of cues' associations with rewarding and aversive outcomes, neurons that respond preferentially to stimuli predicting aversive events update more quickly in amygdala than OFC; meanwhile, OFC neurons that respond preferentially to reward-predicting stimuli update more quickly than those in the amygdala. After learning, however, OFC consistently differentiates between impending reinforcements with?a shorter latency than the amygdala. Finally, analysis of local field potentials (LFPs) reveals a disproportionate influence of OFC on amygdala that emerges after learning. We propose that reversal learning is supported by complex interactions between neural circuits spanning the amygdala and OFC, rather than directed by any single structure.  相似文献   

7.
O'Doherty J 《Neuron》2003,39(5):731-733
Basolateral amygdala and orbitofrontal cortex are implicated in cue-outcome learning. In this issue of Neuron, Schoenbaum et al. show that, following basolateral amygdala lesions, cue-selective neurons in orbitofrontal cortex are more sensory driven and less sensitive to the motivational value of an outcome, suggesting that predictive value coding in orbitofrontal cortex is dependent on input from basolateral amygdala.  相似文献   

8.
Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.  相似文献   

9.
Setlow B  Schoenbaum G  Gallagher M 《Neuron》2003,38(4):625-636
A growing body of evidence implicates the ventral striatum in using information acquired through associative learning. The present study examined the activity of ventral striatal neurons in awake, behaving rats during go/no-go odor discrimination learning and reversal. Many neurons fired selectively to odor cues predictive of either appetitive (sucrose) or aversive (quinine) outcomes. Few neurons were selective when first exposed to the odors, but many acquired this differential activity as rats learned the significance of the cues. A substantial proportion of these neurons encoded the cues' learned motivational significance, and these neurons tended to reverse their firing selectivity after reversal of odor-outcome contingencies. Other neurons that became selectively activated during learning did not reverse, but instead appeared to encode specific combinations of cues and associated motor responses. The results support a role for ventral striatum in using the learned significance, both appetitive and aversive, of predictive cues to guide behavior.  相似文献   

10.
The distribution of c-Fos-immunopositive neurons was examined in the mitral/tufted and granular cell layers in the medium part of the main olfactory bulbs of 18-day-old rats after they had been trained for propionic acid vapour-guided search for dam in the Y-maze. On the next day these pups exhibited a strong preference for the propionic acid odor as compared to the control pups trained for this task without the odor cue and odor-familiarized pups exposed to propionic acid as a novel neutral stimulus. Exposure to propionic acid produced a moderate activation of c-Fos expression, mainly in the granular layer of the dorsomedial part of the bulb. Training in the Y-maze devoid of odor cues resulted in diffuse increase in the number of c-Fos-positive neurons both in the mitral and granular cell layers in all parts of the olfactory bulb. Maze training with the odor cue produced activation of c-Fos expression (which significantly exceeded the non-odor Y-maze group) in the dorsomedial olfactory bulb. These data suggest that associative olfactory conditioning results in activation of c-Fos expression that combines the effect of diffuse motivational excitation and specific olfactory input to the neurons which process odor cues.  相似文献   

11.

Background

The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing.

Methods and Findings

We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1–4 sequential color discrimination trials to obtain a reward of 1–3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount.

Conclusions

Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.  相似文献   

12.
The basolateral amygdala (BLA) and the insular cortex (IC) represent two major areas for odor-taste associations, i.e. flavor integration. This learning may require the development of convergent odor and taste neuronal activation allowing the memory representation of such association. Yet identification of neurons that respond to such coincident input and the effect of flavor experience on odor-taste convergence remain unclear. In the present study we used the compartmental analysis of temporal activity using fluorescence in situ hybridization for Arc (catFISH) to visualize odor-taste convergence onto single neurons in the BLA and in the IC to assess the number of cells that were co-activated by both stimuli after odor-taste association. We used a sucrose conditioned odor preference as a flavor experience in rats, in which 9 odor-sucrose pairings induce a reliable odor-taste association. The results show that flavor experience induced a four-fold increase in the percentage of cells activated by both taste and odor stimulations in the BLA, but not in the IC. Because conditioned odor preference did not modify the number of cells responding selectively to one stimulus, this greater odor-taste convergence into individual BLA neurons suggests the recruitment of a neuronal population that can be activated by both odor and taste only after the association. We conclude that the development of convergent activation in amygdala neurons after odor-taste associative learning may provide a cellular basis of flavor memory.  相似文献   

13.
The dorsolateral column of the periaqueductal gray (dlPAG) integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA) 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US) for the acquisition of olfactory fear conditioning (OFC) using amyl acetate odor as conditioned stimulus (CS). Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.  相似文献   

14.
Acquisition of enhanced natural killer cell activity under anesthesia   总被引:1,自引:0,他引:1  
An increase in natural killer (NK) cell activity can be conditioned with a one trial learning paradigm to demonstrate the interaction between the central nervous system (CNS) and the immune system. In order to demonstrate learning possibilities during ‘non-conscious’ state, mice were anesthetized with a ketamin/rompun mixture and underwent one trial learning with odor cue as the conditioned stimulus (CS) preceding the unconditioned stimulus (US). The results indicated that mice that were exposed to camphor odor cue under the influence of anesthesia can associate the signal with the poly I:C unconditioned stimulus and were able to recall the conditioned response upon reexposure to the CS. Secondly, the conditioned association made in a conscious state can be recalled by exposure to the same olfactory odor cue in a ‘non-conscious’ state. The increase in the conditioned change in NK cell activity of both situations was significantly higher than the control group. The results demonstrate that learning can take place and the learned response can be recalled under the reduced awareness caused by anesthesia. The findings we report are unusual and novel in that they demonstrate that the CNS can learn new associations under conditions where the host is apparently unaware of the signals being linked. Anesthesia combined with the long interstimulus interval indicates that certain neuronal pathways in the CNS are receptive to second signals (elicited by the US) even when the second signal is separated by one day. This means the conditioned learning of a physiological response can take place unconsciously at a separate level and under situations where the host is totally unaware of the events which the brain is processing and linking as incoming information.  相似文献   

15.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

16.
Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7) in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP), an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5-18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor) for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21), mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.  相似文献   

17.
Social and genetic factors can influence smoking behavior. Using olfactogustatory stimuli as the sensory cue for intravenous nicotine self‐administration (SA), we previously showed that social learning of nicotine contingent odor cue prevented rats from developing conditioned taste aversion and allowed them to instead establish stable nicotine SA. We hypothesized that genetic factors influenced socially acquired nicotine SA. A heterogeneous stock (HS; N/NIH) of outbred rats was trained to self‐administer nicotine using the social learning protocol. Both male and female HS rats acquired nicotine SA, but females self‐administered more nicotine than males. After extinction, the context previously paired with nicotine SA, in conjunction with socially transmitted drug cues, was sufficient to cause reinstatement of drug‐seeking behavior. Wide variation in both nicotine intake and reinstatement was observed. Using multiple regression analysis, we found that measures of social interaction were significant predictors of nicotine intake and reinstatement of drug seeking in both males and females. Furthermore, measures of depression were predictors of nicotine intake in both males and females, anxiety was a predictor only in males and response to novelty was a predictor only in females. In males, measures of both depression and anxiety predicted nicotine reinstatement. Together, these data supported the ideas that genetically determined propensities for emotional and social phenotypes are significant determinants for nicotine‐reinforced behavior, and that the HS rat is a suitable tool for dissecting genetic mechanisms that may underlie the interaction between social behavior, anxiety, depression and smoking .  相似文献   

18.
The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) together form a thalamocortical circuit that has been implicated in the learning and production of goal-directed actions. In this study we measured neural activity in both regions simultaneously, as rats learned to press a lever to earn food rewards. In both MD and mPFC, instrumental learning was accompanied by dramatic changes in the firing patterns of the neurons, in particular the rapid emergence of single-unit neural activity reflecting the completion of the action and reward delivery. In addition, we observed distinct patterns of changes in the oscillatory LFP response in MD and mPFC. With learning, there was a significant increase in theta band oscillations (6–10 Hz) in the MD, but not in the mPFC. By contrast, gamma band oscillations (40–55 Hz) increased in the mPFC, but not in the MD. Coherence between these two regions also changed with learning: gamma coherence in relation to reward delivery increased, whereas theta coherence did not. Together these results suggest that, as rats learned the instrumental contingency between action and outcome, the emergence of task related neural activity is accompanied by enhanced functional interaction between MD and mPFC in response to the reward feedback.  相似文献   

19.
Day-to-day variability in performance is a common experience. We investigated its neural correlate by studying learning behavior of monkeys in a two-alternative forced choice task, the two-armed bandit task. We found substantial session-to-session variability in the monkeys’ learning behavior. Recording the activity of single dorsal putamen neurons we uncovered a dual function of this structure. It has been previously shown that a population of neurons in the DLP exhibits firing activity sensitive to the reward value of chosen actions. Here, we identify putative medium spiny neurons in the dorsal putamen that are cue-selective and whose activity builds up with learning. Remarkably we show that session-to-session changes in the size of this population and in the intensity with which this population encodes cue-selectivity is correlated with session-to-session changes in the ability to learn the task. Moreover, at the population level, dorsal putamen activity in the very beginning of the session is correlated with the performance at the end of the session, thus predicting whether the monkey will have a "good" or "bad" learning day. These results provide important insights on the neural basis of inter-temporal performance variability.  相似文献   

20.
Zelano C  Mohanty A  Gottfried JA 《Neuron》2011,72(1):178-187
Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, prestimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to poststimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or "search images" in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号