首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feasibility of elemental sulfur reduction by Desulfovibrio desulfuricans in anaerobic conditions in a stirred reactor was studied. Hydrogen was used as energy source, whereas the carbonated species were bicarbonate and yeast extract. Attention was paid to reactor engineering aspects, biofilm formation on the sulfur surface, hydrogen sulfide formation rate and kinetics limitations of the sulfur reduction. D. desulfuricans formed stable biofilms on the sulfur surface. It was found that active sulfur surface availability limits the reaction rate. The reaction rate was first order with respect to sulfur and hydrogen velocity had no effect in the reaction rate for the range 8.2 x 10(-2) to 4.1 x 10(-1) Nm(3) m(-2) min(-1). At a superficial gas velocity (u(G)) = 3.1 x 10(-2) Nm(3) m(-2) min(-1), H(2)S(g) production rate decreased due to a deficient H(2)S stripping. A maximum H(2)S(g) production rate of 2.1 g H(2)S L(-1) d(-1) was achieved during 5 days with an initial sulfur density of 4.7% (w/v).  相似文献   

2.
Lysine metabolism in a barley mutant resistant to S(2-aminoethyl)cysteine   总被引:1,自引:0,他引:1  
Lysine and S(2-aminoethyl)cysteine (AEC) metabolism were investigated in normal barley (Hordeum vulgare L. cv. Bomi) and a hemozygous recessive AEC-resistant mutant (R906). Feedback regulation of lysine and threonine synthesis from [14C] acetate was unimpaired in plants of the mutant 3 d after germination. Seeds of Bomi and R906 contained similar total amounts of lysine, threonine, methionine and isoleucine. Concentrations of these amino acids in the soluble fraction of plants grown 6 d without AEC were also similar. The concentration of AEC in R906 plants was less than in the parent variety when both were grown in the presence of 0.25 mM AEC for 6 d. The uptake of [3H]AEC and [3H]lysine by roots of R906 was, respectively, 33% and 32% of that by Bomi roots whereas the uptake of these compounds into the scutellum was the same in both the mutant and its parent. The uptake of [3H]leucine and its incorporation into proteins was also the same in Bomi and R906 plants. These results suggest that a transport system specific for lysine and AEC but not leucine is altered or lost in roots of the mutant R906. AEC is incorporated into protein and this could be the reason for inhibition of growth rather than action as a false-feedback inhibitor of lysine biosynthesis.Abbreviations AEC S(2-aminoethyl)cysteine - LYS lysine - THR threonine  相似文献   

3.
4.
Due to the clean air acts and subsequent reduction of emission of gaseous sulfur compounds sulfur deficiency became one of the major nutrient disorders in Northern Europe. Typical sulfur deficiency symptoms can be diagnosed. Especially plants of the Cruciferae family are more susceptible against pathogen attack. Sulfur fertilization can in part recover or even increase resistance against pathogens in comparison to sulfur-deficient plants. The term sulfur-induced resistance (SIR) was introduced, however, the molecular basis for SIR is largely unknown. There are several sulfur-containing compounds in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research focussed mainly on the release of H2S as defence strategy. In field experiments using different BRASSICA NAPUS genotypes it was shown that the genetic differences among BRASSICA genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field experiment demonstrated that sulfur supply and infection with PYRENOPEZIZA BRASSICA influenced L-cysteine desulfhydrase activity in BRASSICA NAPUS. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated and partially analyzed from the model plant ARABIDOPSIS THALIANA. However, it cannot be excluded that H2S is also released in a partial back reaction of O-acetyl-L-serine(thiol)lyase or enzymes not yet characterized. For the exact determination of the H2S concentration in the cell a H2S-specific microsensor was used the first time for plant cells. The transfer of the results obtained for application back on BRASSICA was initiated.  相似文献   

5.
A dry bubble is an undifferentiated structure that forms in place of mushrooms when cultures of Agaricus bisporus are contaminated by Verticillium fungicola. Hydrogen peroxide concentrations were measured in lyophilised samples of bubbles and healthy sporocarps from cultures of genetically related strains of A. bisporus. The strains the more resistant to the pathogen had the higher levels of H2O2 concentration measured in the bubbles, but the differences in the healthy sporocarps were not significant. That is an indication of a higher reaction to the pathogen in the forming sporocarps of A. bisporus strains associated with their partial resistance to V. fungicola.  相似文献   

6.
Dimethylnitrosamine (DMNA) strongly inhibited RNA synthesis in mouse liver under conditions when the nucleotide pattern, rate of nucleotide synthesis and phosphorylation ratio were unaffected. (An unidentified, probably non-nucleotide, component in the acid-soluble liver fraction was selectively reduced.) The inhibition of RNA synthesis was associated with a decrease in the RNA polymerase activity of isolated liver nuclei, well established already 45 min after DMNA administration. The reduced activity included both Mg2+- and Mn2+/(NH4)2SO4-stimulated polymerase functions. The inhibition in vivo involved the whole complement of RNA, including poly (A)-containing RNA and isolated poly(A) sequences. The transfer of labelled RNA from the nucleus to the cytoplasm was not impaired. There was no detachment of poly(A)-containing RNA from the microsomes, and the proportion of tightly membrane-bound microsomal RNA and poly(A) sequences was not reduced as determined by use of a flotation technique. No breakage or shortening of the poly(A) chains was indicated by sedimentation analysis.  相似文献   

7.
8.
硫化氢(H2S)是继一氧化氮(NO)和一氧化碳(CO)之后第3个气体信号分子, 在植物体内参与许多重要的生理活动, 能够促进植物光合作用和有机物的积累, 缓解各种生物和非生物胁迫并促进植物生长发育。该文综述了植物体内H2S的物理化学性质、产生机制、主要生理功能和作用机制以及与其它信号分子的互作关系, 并展望了H2S信号分子的研究前景。  相似文献   

9.
10.
11.
RS‐4‐(4‐Hydroxyphenyl)‐2‐butanol (rhododendrol, RD) was reported to induce leukoderma of the skin. To explore the mechanism underlying that effect, we previously showed that oxidation of RD with mushroom tyrosinase produces RD‐quinone, which is converted to secondary quinone products, and we suggested that those quinones are cytotoxic because they bind to cellular proteins and produce reactive oxygen species. We then confirmed that human tyrosinase can oxidize both enantiomers of RD. In this study, we examined the metabolism of RD in B16F1 melanoma cells in vitro. Using 4‐amino‐3‐hydroxy‐n‐butylbenzene as a specific indicator, we detected moderate levels of RD‐pheomelanin in B16F1 cells exposed to 0.3 to 0.5 mM RD for 72 h. We also confirmed the covalent binding of RD‐quinone to non‐protein thiols and proteins through cysteinyl residues. The covalent binding of RD‐quinone to proteins was 20‐ to 30‐fold greater than dopaquinone. These results suggest that the tyrosinase‐induced metabolism of RD causes melanocyte toxicity.  相似文献   

12.
Evolution of resistance to fungal parasitism in natural ecosystems   总被引:1,自引:1,他引:0  
  相似文献   

13.
Seventeen strains of phototrophic bacteria (4 strains of Chromatium spp., 2 strains of Thiocapsa sp., 4 strains of Ectothiorhodospira spp., 2 strains of Rhodopseudomonas sp., and 5 strains of Chlorobium spp.) have been grown in sulfide-limited continuous cultures to assess the affinity for sulfide. It was found that the affinity (calculated as the initial slope of the specific growth rate versus the concentration of sulfide) is higher in those phototrophic bacteria that deposit elemental sulfur outside the cells, than in those bacteria that store the sulfur inside the cells. A hypothesis is presented to explain this correlation.Dedicated to Prof. Dr. Hans G. Schlegel on the occasion of his 60th birthday  相似文献   

14.
采用盆栽称量法研究了对照、中度和重度干旱(土壤相对含水量分别为75%、55%和35%)条件下1年生酸枣〔Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chow〕幼苗叶片中黄酮类成分含量及一些生长和生理指标的变化,并讨论了酸枣适应干旱过程中黄酮类成分的作用。结果表明:在中度和重度干旱条件下酸枣叶片苯丙氨酸解氨酶(PAL)活性均高于对照,但经重度干旱处理后复水第7天PAL活性与对照无显著差异。与对照相比,中度干旱条件下叶片槲皮素含量基本无变化,总黄酮和芦丁含量分别显著或极显著增加,丙二醛和可溶性蛋白质含量无显著变化;与中度干旱条件相比,重度干旱条件下叶片总黄酮、芦丁和槲皮素含量显著或极显著下降,丙二醛含量不显著增加,可溶性蛋白质含量显著降低;与对照相比,重度干旱条件下总黄酮含量无明显变化,芦丁和丙二醛含量极显著或显著增加,槲皮素和可溶性蛋白质含量显著下降;复水第7天,总黄酮、芦丁和槲皮素含量均显著或极显著高于复水前,且总黄酮和芦丁含量显著高于对照,槲皮素含量与对照无显著差异;复水第1天至第4天,丙二醛含量呈先降后增再降的趋势、可溶性蛋白质含量则呈先降低后逐渐增加的趋势,其中复水第1天丙二醛含量显著高于复水前、可溶性蛋白质含量显著低于复水前。在中度或重度干旱胁迫后酸枣枝条长度均极显著小于对照,且随土壤相对含水量的降低枝条长度减小;叶片相对含水量也表现出随土壤相对含水量的降低逐渐减小的趋势,但差异不显著。研究结果提示:适宜的干旱胁迫可促进酸枣叶片黄酮类代谢,但在不同的干旱胁迫条件下,黄酮类代谢在酸枣抗旱过程中具有不同的作用。  相似文献   

15.
16.
Endogenous elemental sulfur (S°) was measured in dormant α-spores of Phomopsis viticola Sacc. (ATCC 44940) from young (25-day-old) and aging (105-day-old) cultures grown on malt extract agar medium enriched with [35S]-MgSO4. Endogenous S° from the mitochondrial fraction, and the lipid and aqueous cytoplasmic fractions of young and aging α-spores were purified by column chromatography followed by thin-layer chromatography. The purity of mitochondrial pellets were checked by the catalase (EC 1.11.1.6) and acid phosphatase (EC 3.1.3.1) activities. Activities of the mitochondrial enzymes NAD+-isocitrate dehydrogenase (EC 1.1.1.41) and cytochrome c oxidase (EC 1.9.3.1) were also measured to determine the distribution of the endogenous S° between mitochondria and cytoplasm. In young dormant α-spores, endogenous S° was mostly found in the cytoplasmic lipid reserves, which were mainly phospholipids. The mitochondrial fraction of these young α-spores contained ca 10% of the total endogenous S°, whereas in aging α-spores stored for 105 days the endogenous S° was mainly (ca 90%) localized in the mitochondrial fraction. This accumulation of S° in mitochondria of aging α-spores was correlated with a sharp decrease in phospholipid reserves, endogenous and exogenous respiratory activities, ATP concentration, uptake of sulfate, and NAD+-isocitrate dehydrogenase and cytochrome c oxidase activities. These metabolic changes were correlated with an irreversible loss of germination capacity which leads to the natural death of P. viticolaα-spores. During the first min of the breaking of dormancy, the young α-spores possess a 7.3-fold capacity to reduce exogenous S° with production of hydrogen sulfide, as compared to the aging α-spores. In young α-spores the production of hydrogen sulfide was almost totally inhibited by 40 μM antimycin A (92%), and strongly inhibited by 2mM azide (75%) and by 15 μM 2,4-dinitrophenol (63%). Our work suggests that endogenous S° plays a key role in the regulation of the dormancy and aging processes of α-spores of P. viticola.  相似文献   

17.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cell. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ‘Crabtree effect’, was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate hydrogenase was subject to glucose inactivation.  相似文献   

18.
Abstract. The focus of this study is the response of species to time of snowmelt and altitude in alpine areas and an examination of changes in species response to snowmelt as altitude increases and temperature decreases. Transects (n= 43) were placed evenly along an altitudinal gradient at Finse, Hardanger‐vidda, western Norway, from ridges to late snowbeds. These gradients were systematically sampled (‘Repeated Gradient Analysis, RGA’) and an adjusted F‐test was used to determine repeated trends in species distribution along the transects. Of the 41 taxa analysed 22 showed a significant change in expected occurrence in response to time of snowmelt (when a site becomes free of snow) as altitude increased. Three types of response were observed: (1) no change in response: (2) increased occurrence as altitude increases, i.e. the taxon invades snow‐free sites as altitude increases, and (3) decreased occurrence as altitude increases, i.e. the taxon retreats from snow covered areas. It is suggested that the changes in response are due to both environmental factors (temperature related) and biological interactions. Decreases in expected occurrence are probably due to increased environmental severity as altitude increases (temperature related decreases). These species are represented by taxa preferring intermediate cover of snow. The invasion of earlier snow‐free sites is probably due to reduced competition from lee‐side taxa as altitude increases. A predictive model based on the species‐environmental relationships suggests that a 1°K temperature increase changes the limits of occurrence in response to time of snowmelt from 3 to 20 days for the different taxa.  相似文献   

19.
Some plants hyperaccumulate selenium (Se) up to 1% of dry weight. This study was performed to obtain insight into whole-plant Se fluxes in hyperaccumulators. Selenium hyperaccumulators Astragalus bisulcatus and Stanleya pinnata were monitored over two growing seasons for seasonal fluctuations in concentrations of Se and the chemically similar element sulfur (S). The related nonhyperaccumulators Astragalus sericoleucus, Oxytropis sericea and Thlaspi montanum were included for comparison. In both hyperaccumulators leaf Se decreased from April to October, coinciding with Se hyperaccumulation in flowers and seeds. Root Se levels were lowest in summer. Selenium concentration decreased with leaf age in both hyperaccumulators. Leaf S levels peaked in summer in all plant species, as did Se levels in nonhyperaccumulators. Selenium and S levels tended to be negatively correlated in hyperaccumulators, and positively correlated in nonhyperaccumulators. These results suggest a specific flow of Se in hyperaccumulator plants over the growing season, from root to young leaves in spring, followed by remobilization from aging leaves to reproductive tissues in summer, and back to roots in the autumn.  相似文献   

20.
The aim of the present study was to analyse whether offspring of mature Quercus ilex trees grown under life‐long elevated pCO2 show alterations in the physiological response to elevated pCO2 in comparison with those originating from mature trees grown at current ambient pCO2. To investigate changes in C‐ (for changes in photosynthesis, biomass and lignin see Polle, McKee & Blaschke Plant, Cell and Environment 24, 1075–1083, 2001), N‐, and S‐metabolism soluble sugar, soluble non‐proteinogenic nitrogen compounds (TSNN), nitrate reductase (NR), thiols, adenosine 5′‐phosphosulphate (APS) reductase, and anions were analysed. For this purpose Q. ilex seedlings were grown from acorns of mother tree stands at a natural spring site (elevated pCO2) and a control site (ambient pCO2) of the Laiatico spring, Central Italy. Short‐term elevated pCO2 exposure of the offspring of control oaks lead to higher sugar contents in stem tissues, to a reduced TSNN content in leaves, and basipetal stem tissues, to diminished thiol contents in all tissues analysed, and to reduced APS reductase activity in both, leaves and roots. Most of the components of C‐, N‐ and S‐metabolism including APS reductase activity which were reduced due to short‐term elevated pCO2 exposure were recovered by life‐long growth under elevated pCO2 in the offspring of spring oaks. Still TSNN contents in phloem exudates increased, nitrate contents in lateral roots and glutathione in leaves and phloem exudates remained reduced in these plants. The present results demonstrated that metabolic adaptations of Q. ilex mother trees to elevated pCO2 can be passed to the next generation. Short‐ and long‐term effects on source‐to‐sink relation and physiological and genetic acclimation to elevated pCO2 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号