首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

2.
The genetic map for alfalfa presented here has eight linkage groups representing the haploid chromosome set of the Medicago species. The genetic map was constructed by ordering the linkage values of 89 RFLP, RAPD, isozyme and morphological markers collected from a segregating population of 138 individuals. The segregating population is self-mated progeny of an F1 hybrid plant deriving from a cross between the diploid (2n=2x=16) yellow-flowered Medicago sativa ssp. quasifalcata and the diploid (2n=2x=16) blue-flowered M. sativa ssp. coerulea. The inheritance of many traits displayed distorted segregation, indicating the presence of lethal loci in the heterozygotic parent plants. In spite of the lack of uniform segregation, linkage groups could be assigned and the order of the markers spanning > 659 centimorgans could be unambiguously determined. This value and the calculated haploid genome size for Medicago (1n=1x=1.0 x 109 bp) gives a ratio of < 1500 kb per centimorgan.  相似文献   

3.
A linkage map for sugi was constructed on the basis of restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), and isozyme loci using a three-generation pedigree prepared for genetic analysis of heartwood color. A total of 128 RFLP (123 cDNA and 5 genomic probes), 33 RAPD, 2 isozyme, and 1 morphological (dwarf) loci segregated in 73 progeny. Of the 164 segregating loci, 145 loci were distributed in 20 linkage groups. Of these loci, 91 with confirmed map positions were assigned to 13 linkage groups, covering a total of 887.3 cM. A clustering of markers with distorted segregation was observed in 6 linkage groups. In the four clusters, distortions with a reduction in the number of homozygotes from one parent only were found.Abbreviations MAS marker-assisted selection - PAGE polyacrylamide gel electrophoresis - QTL quantitative traits of loci - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism This work was supported by a Grant-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and by a Grant-in-Aid from the Ministry of Education, Science and Culture of Japan (Cooperative Research, no. 04304017)  相似文献   

4.
One hundred and ten markers were analysed for linkage in 218 F2 plants derived from two divergent cultivars (Védrantais and Songwhan Charmi) of Cucumis melo (L.). Thirty-four RFLPs, 64 RAPDs, one isozyme, four disease resistance markers and one morphological marker were used to construct a genetic map spanning 14 linkage groups covering 1390 cM of the melon genome. RAPD and RFLP markers detected similar polymorphism levels. RFLPs were largely due to base substitutions rather than insertion/deletions. Twelve percent of markers showed distorted segregation. Phenotypic markers consisted of two resistance genes against Fusarium wilt (Fom-1 and Fom-2), one gene (nsv) controlling the resistance to melon necrotic spot virus, one gene (Vat) conferring resistance to Aphis gossypii, and a recessive gene for carpel numbers (3 vs 5 carpels: p).  相似文献   

5.
Genetic mapping with RAPD markers has been initiated in Citrus. Reproducible polymorphism of amplified DNA fragments was obtained with approximately half of the 140 random primers tested, revealing 266 segregating loci. These were tested for linkage using 60 BC1 progeny from an intergeneric cross of Citrus grandis (L.) Osb. x [Citrus grandis (L.) Osb. x Poncirus trifoliata (L.) Raf.]. A core linkage map was constructed that consists of nine linkage groups containing 109 RAPD markers and 51 previously-mapped RFLP and isozyme markers. A further 79 markers that could not be ordered unambiguously because of their allelic constitution were associated with individual linkage groups and are shown in relation to the core map. The core map has a total length of 1192 cM with an average distance of 7.5 cM between loci and is estimated to cover 70–80% of the genome. Loci with distorted segregation patterns clustered on several linkage groups. Individual clusters of loci were skewed in allelic composition toward one or the other parent, usually C. grandis. This relatively-saturated linkage map will eventually be used to identify quantitative trait loci for cold and salt-tolerance in Citrus. As a beginning we have mapped three loci detected by a cold-acclimation-responsive cDNA.  相似文献   

6.
RFLP-based genetic map of rye, developed previously using a cross of lines DS2×RXL10 (F2 generation), was extended with 69 RAPD and 12 isozyme markers. The actual map contains 282 markers dispersed on all seven chromosomes and spans a distance of 1,140 cM. The efficiency of mapping RAPD markers was close to ten loci per 100-screened arbitrary primers. A strong selection of polymorphic, intensive and reproducible fragments was necessary to reveal individual marker loci that could be assigned to rye chromosomes. Newly mapped markers cover a substantial part of the rye genome and constitute a valuable tool suitable for map saturation, marker-aided selection and phenetic studies. A specific nomenclature for the RAPD loci mapped on individual rye chromosomes, which could be helpful in managing of accumulating data, is proposed. Received: 8 May 2000 / Accepted: 17 October 2000  相似文献   

7.
Summary Segregating allozyme and DNA polymorphisms were used to construct a preliminary linkage map for faba bean. Two F2 populations were analyzed, the most informative of which was segregating for 66 markers. Eleven independently assorting linkage groups were identified in this population. One of the groups contained the 45s ribosomal array and could be assigned to the large metacentric chromosome I on which the nucleolar organizer region is located. This linkage group also contained two isozyme loci, Est and Tpi-p, suggesting that it may share some homology with chromosome 4 of garden pea on which three similar markers are syntenic. Additional aspects of the map and the extent of coverage of the total nuclear genome are discussed.  相似文献   

8.
 The potential of PCR-based markers for construction of a genetic linkage map in Einkorn wheat was investigated. From a comparison of polymorphisms between two Einkorn wheats, Triticum monococcum (Mn) and T. boeoticum (Bt), we obtained 49 polymorphic bands produced by 33 primers for inter-simple sequence repeat (ISSR) and 36 polymorphic bands shown by 25 combinations of random amplified polymorphic DNA (RAPD) primers for mapping in 66 individuals in the F2 population. Although 44 ISSR fragments and 29 RAPD fragments statistically showed a 3 : 1 segregation ratio in the F2 population, only 9 markers each of the ISSR and RAPD bands were able to be mapped on the RFLP linkage map of Einkorn wheat. ISSR markers were distributed throughout the chromosomes. The mapped positions of the ISSR markers seemed to be similar to those obtained by the RFLP markers. On the other hand, 4 of the 9 RAPD markers could map the RFLP marker-poor region on the short arm of 3Am, suggesting a potential to map novel regions containing repetitive sequences. Comparisons of the genetic linkage map of Einkorn wheat to the linkage map and cytological map of common wheat revealed that the marker orders between the two maps of Einkorn wheat and common wheat coincided except for 4A, which harbors chromosome rearrangements specific for polyploid wheats, indicating a conservatism between the two genomes. Recombinations in Einkorn wheat chromosomes took place more frequently around the centromere and less at the distal part of chromosomes in comparison to those in common wheat. Nevertheless, recombinations even in Einkorn wheat chromosomes were strongly suppressed around the centromere. In fact, the markers located within 1 cM of the centromere were located almost in the central part of the chromosome arm. Received: 7 June 1997 / Accepted: 17 June 1997  相似文献   

9.
A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers was constructed using the two-way pseudo-testcross strategy. A total of 96 individuals from a F1 full-sib family was genotyped with 381 molecular markers (311 RAPDs, 65 ISSRs, 5 isozymes). Markers in testcross configuration, segregating 1:1, were used to establish two separate maternal and paternal maps including 187 and 148 markers, respectively. The markers identified 12 linkage groups based on the haploid number of chestnut. The female and male framework maps reached a total length of 720 and 721 cM (Kosambi), respectively, representing a 76% and 68% coverage of the overall genome. A total of 46 markers, found in intercross configuration, segregating 3:1 and 1:2:1, were used to identify homologous linkage groups between parental maps; out of 12 linkage groups 11 could be joined. RAPD and ISSR markers showed a good and comparable reliability, allowing for the first time the establishment of a saturated linkage map for European chestnut. These maps will be a starting point for studies on the structure, evolution and function of the chestnut genome. Identification of QTLs for adaptive traits in chestnut will be the primary target. Received: 3 July 2000 / Accepted: 16 October 2000  相似文献   

10.
Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon   总被引:14,自引:0,他引:14  
Three different types of molecular markers, RAPD, AFLP and RFLP were used to measure genetic diversity among six genotypes of Cucumis melo L. Each line represented a different melon genotype: Piel de Sapo, Ogen, PI161375, PI414723, Agrestis and C105. A number of polymorphic RAPD, AFLP and RFLP bands were scored on all materials and the genetic similarity measured. Clustering analysis performed with the three types of markers separated the genotypes into two main groups: (1) the sweet type, cultivated melons and (2) the exotic type, not cultivated melons. While the data obtained suggest that all three types of markers are equally informative, AFLPs showed the highest efficiency in detecting polymorphism. Received: 30 December 1999 / Accepted: 24 January 2000  相似文献   

11.
Genetic linkage map in sour cherry using RFLP markers   总被引:6,自引:0,他引:6  
 Restriction fragment length polymorphism (RFLP) linkage maps of two tetraploid sour cherry (Prunus cerasus L., 2n=4x=32) cultivars, Rheinische Schattenmorelle (RS) and Erdi Botermo (EB), were constructed from 86 progeny from the cross RS×EB. The RS linkage map consists of 126 single-dose restriction fragment (SDRF, Wu et al. 1992) markers assigned to 19 linkage groups covering 461.6 cM. The EB linkage map has 95 SDRF markers assigned to 16 linkage groups covering 279.2 cM. Fifty three markers mapped in both parents were used as bridges between both maps and 13 sets of homologous linkage groups were identified. Homoeologous relationships among the sour cherry linkage groups could not be determined because only 15 probes identified duplicate loci. Fifty nine of the markers on the linkage maps were detected with probes used in other Prunus genetic linkage maps. Four of the sour cherry linkage groups may be homologous with four of the eight genetic linkage groups identified in peach and almond. Twenty one fragments expected to segregate in a 1 : 1 ratio segregated in a 2 : 1 ratio. Three of these fragments were used in the final map construction because they all mapped to the same linkage group. Six fragments exhibited segregation consistent with the expectations of intergenomic pairing and/or recombination. Received: 1 April 1998 / Accepted: 9 June 1998  相似文献   

12.
Summary A restriction fragment length polymorphism (RFLP)-based linkage map for common bean (Phaseolus vulgaris L.) covering 827 centiMorgans (cM) was developed based on a F2 mapping population derived from a cross between BAT93 and Jalo EEP558. The parental genotypes were chosen because they exhibited differences in evolutionary origin, allozymes, phaseolin type, and for several agronomic traits. The segregation of 152 markers was analyzed, including 115 RFLP loci, 7 isozyme loci, 8 random amplified polymorphic DNA (RAPD) marker loci, and 19 loci corresponding to 15 clones of known genes, 1 virus resistance gene, 1 flower color gene, and 1 seed color pattern gene. Using MAPMAKER and LINKAGE-1, we were able to assign 143 markers to 15 linkage groups, whereas 9 markers remained unassigned. The average interval between markers was 6.5 cM; only one interval was larger than 30 cM. A small fraction (9%) of the markers deviated significantly from the expected Mendelian ratios (121 or 31) and mapped into four clusters. Probes of known genes belonged to three categories: seed proteins, pathogen response genes, and Rhizobium response genes. Within each category, sequences homologous to the various probes were unlinked. The I gene for bean common mosaic virus resistance is the first disease resistance gene to be located on the common bean genetic linkage map.  相似文献   

13.
 An integrated genetic map of the dioecious species Asparagus officinalis L. has been constructed on the basis of RFLP, RAPD, AFLP and isoenzyme markers. The segregation analysis of the polymorphic markers was carried out on the progeny of five different crosses between male and female doubled-haploid clones generated by anther culture. A total of 274 markers have been organized to ten linkage groups spanning 721.4 cM. Since the haploid chromosome number of asparagus is ten, the established linkage groups probably represent the different chromosomes; however, the only group associated with a specific chromosome is the one which includes sex, whose determinant genes have been located on chromosome 5. A total of 33 molecular markers (13 RFLPs, 18 AFLPs, 2 RAPDs and 1 isoenzyme) have been located on this chromosome. The closest marker to the sex determinant is the AFLP SV marker at 3.2 cM. Received: 26 March 1998 / Accepted: 30 April 1998  相似文献   

14.
The F2 generations from two maize crosses were used to compare the ability of RAPD and RFLP marker systems to create a genetic linkage map. Both RFLPs and RAPDs were shown to provide Mendelian-type markers. Most of the RFLPs (80%) could be placed with a good level of certainty (LOD>4) on the genetic linkage map. However, because of their dominant nature, only between 37% and 59% of the RAPDs could be placed with such a LOD score. The use of combined data from RFLPs and RAPDs increases the level of information provided by RAPDs and allows the creation of a combined RFLP/RAPD genetic linkage map. Thus, the RAPD technique was found to be a powerful method to provide improved probes coverage on a previously created RFLP map and to locate markers linked to chromosomal regions of interest.  相似文献   

15.
We have undertaken the construction of a Brassica napus genetic map with isozyme (4%), RFLP (26.5%) and RAPD (68%) markers on a 152 lines of a doubled-haploid population. The map covers 1765 cM and comprises 254 markers including three PCR-specific markers and a morphological marker. They are assembled into 19 linkage groups, covering approximatively 71% of the rapeseed genome. Thirty five percent of the studied markers did not segregate according to the expected Mendelian ratio and tended to cluster in eight specific linkage groups. In this paper, the structure of the genetic map is described and the existence of non-Mendelian segregations in linkage analysis as well as the origins of the observed distortions, are discussed. The mapped RFLP loci corresponded to the cDNAs already used to construct B. napus maps. The first results of intraspecific comparative mapping are presented.  相似文献   

16.
A linkage map with RFLP and isozyme markers for almond   总被引:12,自引:0,他引:12  
Inheritance and linkage studies were conducted with seven isozyme genes and 120 RFLPs in the F1 progeny of a cross between almond cultivars Ferragnes and Tuono. RFLPs were detected using 57 genomic and 43 cDNA almond clones. Eight of the cDNA probes corresponded to known genes (extensin, prunin (2), -tubulin, endopolygalacturonase, oleosin, actin depolymerizing factor and phosphoglyceromutase). Single-copy clones were found more frequently in the cDNA (65%) than in the genomic libraries (26%). Two maps were elaborated, one with the 93 loci heterozygous in Ferragnes and another with the 69 loci heterozygous in Tuono. Thirty-five loci were heterozygous in both parents and were used as bridges between both maps. Most of the segregations (91%) were of the 11 or 1111 types, and data were analyzed as if they derived from two backcross populations. Eight linkage groups covering 393 cM in Ferragnes and 394 in Tuono were found for each map. None of the loci examined in either map was found to be unlinked. Distorted segregation ratios were mainly concentrated in two linkage groups of the Ferragnes map.  相似文献   

17.
 Random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers were used to evaluate genetic relationships within the Theobroma cacao species and to assess the organization of its genetic diversity. Genetic variability was estimated with 18 primers and 43 RFLP probes on 155 cocoa trees belonging to different morphological groups and coming from various geographic origins. The majority of the RFLP probes issued from low-copy DNA sequences. On the basis of on the genetic distance matrices, the two molecular methods gave related estimates of the genetic relationship between genotypes. Although an influence of cocoa morphological groups and geographical origins of trees was observed, a lack of gene differentiation characterized the T. cacao accessions studied. The continuous RFLP variability observed within the species may reflect the hybridization and introgressions between trees of different origins. Nevertheless, the Nacional type was detected to be genetically specific and different from well-known types such as Forastero, Criollo and Trinitario. Some of those genotypes were characterized by a low heterozygosity rate and may constitute the original Nacional pool. These results also provide information for the constitution of a cocoa tree core collection. Received: 10 June 1996/Accepted: 11 October 1996  相似文献   

18.
A genetic linkage map of peach [Prunus persica (L.) Batch] was constructed in order to identify molecular markers linked to economically important agronomic traits that would be particularly useful for long-lived perennial species. An intraspecific F2 population was generated from self-pollinating a single F1 plant from a cross between a flat non-acid peach, ‘Ferjalou Jalousia®’ and an acid round nectarine ‘Fantasia’. Mendelian segregations were observed for 270 markers including four agronomic characters (peach/nectarine, flat/round fruit, acid/non-acid fruit, and pollen sterility) and 1 isoenzyme, 50 RFLP, 92 RAPD, 8 inter-microsatellite amplification (IMA), and 115 amplified fragment length polymorphism (AFLP) markers. Two hundred and forty-nine markers were mapped to 11 linkage groups covering 712 centiMorgans (cM). The average density between pairs of markers is 4.5?cM. For the four agronomic characters studied, molecular markers were identified. This map will be used for the detection of QTL controlling fruit quality in peach and, particularly, the acid and sugar content.  相似文献   

19.
A genetic linkage map of Theobroma cacao L.   总被引:2,自引:0,他引:2  
A linkage map of the cocoa genome comprising 193 loci has been constructed. These loci consist of 5 isozymes, 101 cDNA/RFLPs, 4 loci from genes of known function, 55 genomic DNA/RFLPs and 28 RAPDs. A population of 100 individuals derived from a cross between two heterozygous genotypes was used. Segregation analyses were performed with the JoinMap program. Ten linkage groups, which putatively correspond to the ten gametic chromosomes of cocoa, were identified. The map covers a total length of 759 cM with a 3.9 cM average distance between 2 markers. A small fraction (9%) of the markers deviated significantly from the expected Mendelian ratios.  相似文献   

20.
The first genetic map for Hevea spp. (2n=36) is presented here. It is based on a F1 progeny of 106 individuals allowing the construction of a female, a male, and a synthetic map according to the pseudo-testcross strategy. Progeny were derived from an interspecific cross between PB260, a H. brasiliensis cultivated clone, and RO38, a H. brasiliensis×H. benthamiana interspecific hybrid clone. The disomic inheritance observed for all the codominant markers scattered on the 2n=36 chromosomes revealed that Hevea behaves as diploids. Homologous linkage groups between the two parental maps were merged using bridge loci. A total of 717 loci constituted the synthetic map, including 301 RFLPs, 388 AFLPs, 18 microsatellites, and 10 isozymes. The markers were assembled into 18 linkage groups, thus reflecting the basic chromosome number, and covered a total distance of 2144 cM. Nine markers were found to be unlinked. Segregation distortion was rare (1.4%). Average marker density was 1 per 3 cM. Comparison of the distance between loci in the parental maps revealed significantly less meiotic recombination in the interspecific hybrid male parent than in the female parent. Hevea origin and genome organisation are discussed. Received: 2 February 1999 / Accepted: 11 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号