首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrillin-1 is a mosaic protein mainly composed of 43 calcium binding epidermal growth factor-like (cbEGF) domains arranged as multiple, tandem repeats. Mutations within the fibrillin-1 gene cause Marfan syndrome (MFS), a heritable disease of connective tissue. More than 60% of MFS-causing mutations identified are localized to cbEGFs, emphasizing that the native properties of these domains are critical for fibrillin-1 function. The cbEGF12-13 domain pair is within the longest run of cbEGFs, and many mutations that cluster in this region are associated with severe, neonatal MFS. The NMR solution structure of Ca(2+)-loaded cbEGF12-13 exhibits a near-linear, rod-like arrangement of domains. This observation supports the hypothesis that all fibrillin-1 (cb)EGF-cbEGF pairs, characterized by a single interdomain linker residue, possess this rod-like structure. The domain arrangement of cbEGF12-13 is stabilized by additional interdomain packing interactions to those observed for cbEGF32-33, which may help to explain the previously reported higher calcium binding affinity of cbEGF13. Based on this structure, a model of cbEGF11-15 that encompasses all known neonatal MFS missense mutations has highlighted a potential binding region. Backbone dynamics data confirm the extended structure of cbEGF12-13 and lend support to the hypothesis that a correlation exists between backbone flexibility and cbEGF domain calcium affinity. These results provide important insight into the potential consequences of MFS-associated mutations for the assembly and biomechanical properties of connective tissue microfibrils.  相似文献   

2.
Calcium binding epidermal growth factor-like domains (cbEGFs) are present in many extracellular proteins, including fibrillin-1, Notch-3, protein S, factor IX and the low density lipoprotein (LDL) receptor, which perform a diverse range of functions. Genetic mutations that cause amino acid changes within these proteins have been linked to the Marfan syndrome (MFS), CADASIL, protein S deficiency, haemophilia B and familial hypercholesterolaemia, respectively. A number of these mutations disrupt calcium binding to cbEGFs, emphasising the critical functional role of calcium in these proteins.We have determined the calcium binding affinity of two sites within a cbEGF pair (cbEGF12-13) from human fibrillin-1 using two-dimensional nuclear magnetic resonance (NMR) and fluorescence techniques. Fibrillin-1 is a mosaic protein containing 43 cbEGF domains, mainly arranged as tandem repeats. Our results show that the cbEGF13 site in the cbEGF12-13 pair possesses the highest calcium affinity of any cbEGF investigated from fibrillin-1. A comparative analysis of these and previously reported calcium binding data from fibrillin-1 demonstrate that the affinity of cbEGF13 is enhanced more than 70-fold by the linkage of an N-terminal cbEGF domain. In contrast, comparison of calcium binding by cbEGF32 in isolation relative to when linked to a transforming growth factor beta-binding protein-like domain (TB6-cbEGF32) reveals that the same enhancement is not observed for this heterologous domain pair. Taken together, these results indicate that fibrillin-1 cbEGF Ca2+ affinity can be significantly modulated by the type of domain which is linked to its N terminus. The cbEGF12-13 pair is located within the longest contiguous section of cbEGFs in fibrillin-1, and a number of mutations in this region are associated with the most severe neonatal form of MFS. The affinities of cbEGF domains 13 and 14 in this region are substantially higher than in the C-terminal region of fibrillin-1. This increased affinity may be important for fibrillin assembly into 10-12 nm connective tissue microfibrils and/or may contribute to the biomechanical properties of the microfibrillar network.  相似文献   

3.
Homocystinuria, a disorder originating in defects in the methionine metabolism, is characterized by an elevated plasma concentration of homocysteine. Most patients have a defect in the cystathionine-beta-synthase, the key enzyme in the conversion of homocysteine to cysteine. Many abnormalities in the connective tissue of patients with homocystinuria resemble those seen in Marfan syndrome, caused by mutations in fibrillin-1. These observations led to the hypothesis that the structure and function of fibrillin-1 is compromised in patients with homocystinuria. To test this hypothesis we produced recombinant human fibrillin-1 fragments spanning the central portion of the molecule (8-Cys/transforming growth factor-beta binding domain 3 to calcium binding EGF domain 22) and extensively analyzed the potential of homocysteine to modify structural and functional properties of these proteins. Circular dichroism spectroscopy revealed moderate changes of their secondary structures after incubation with homocysteine. Equilibrium dialysis demonstrated a number of high affinity calcium binding sites in the tandemly repeated calcium binding epidermal growth factor-like domains 11-22. Calcium binding of homocysteine-modified fragments was completely abolished. Incubation of the recombinant proteins with homocysteine rendered the analyzed calcium binding EGF domains as well as the 8-Cys/transforming growth factor-beta binding domain 3 significantly more susceptible to proteolytic degradation. Furthermore, data were obtained demonstrating that homocysteine can covalently modify fibrillin-1 via disulfide bonds. These data strongly suggest that structural and functional modifications as well as degradation processes of fibrillin-1 in the connective tissues of patients with homocystinuria play a major role in the pathogenesis of this disorder.  相似文献   

4.
The calcium-binding epidermal growth factor-like (cbEGF) module and the transforming growth factor beta-binding protein-like (TB) module are the two major structural motifs found in fibrillin-1, the extracellular matrix (ECM) protein defective in the Marfan syndrome (MFS). An MFS-causing mutation, N2144S, which removes a calcium ligand in cbEGF32, does not detectably affect fibrillin-1 biosynthesis, rate of secretion, processing, or deposition of reducible fibrillin-1 into the ECM. Since the residue at position 2144 is normally engaged in calcium ligation, it is unable to mediate intermolecular interactions. We have shown previously that this mutation does not affect the folding properties of the TB or cbEGF domains in vitro, but does decrease calcium-binding in cbEGF and TB-cbEGF domain constructs. Here, we use NMR spectroscopy to probe the effects of the N2144S mutation on backbone dynamic properties of TB6-cbEGF32. Analysis of the backbone (15)N relaxation data of wild-type TB6-cbEGF32 has revealed a flexible inter-domain linkage. Parallel dynamics analysis of the N2144S mutant has shown increased flexibility in the region joining the two domains as well as in the calcium-binding site at the N terminus of cbEGF32. This research demonstrates that a small change in peptide backbone flexibility, which does not enhance proteolytic susceptibility of the domain pair, is associated with an MFS phenotype. Flexibility of the TB-cbEGF linkage is likely to contribute to the biomechanical properties of fibrillin-rich connective tissue microfibrils, and may play a role in the microfibril assembly process.  相似文献   

5.
Mutations in the fibrillin-1 gene (FBN1) cause Marfan syndrome (MFS), an autosomal dominant disorder of connective tissue with highly variable clinical manifestations. FBN1 contains 47 epidermal growth factor (EGF)-like modules, 43 of which display a consensus sequence for calcium binding (cbEGF). Calcium binding by cbEGF modules is thought to be essential for the conformation and stability of fibrillin-1. Missense mutations in cbEGF modules are the most common mutations found in MFS and generally affect one of the six highly conserved cysteines or residues of the calcium-binding consensus sequence. We have generated a series of recombinant fibrillin-1 fragments containing six cbEGF modules (cbEGF nos. 15-20) with various mutations at different positions of cbEGF module no. 17, which is known to contain a cryptic cleavage site for trypsin. A mutation affecting a residue of the calcium-binding consensus sequence (K1300E) found in a patient with relatively mild clinical manifestations of classic MFS caused a modest increase in susceptibility to in vitro proteolysis by trypsin, whereas a mutation affecting the sixth cysteine residue of the same cbEGF module (C1320S) reported in a severely affected patient caused a dramatic increase in susceptibility to in vitro proteolysis by trypsin. A mutation at the cryptic cleavage site for trypsin abolished sensitivity of wild-type fragments and fragments containing K1300E to trypsin proteolysis. Whereas the relevance of in vitro proteolysis to the in vivo pathogenesis of MFS remains unclear, our findings demonstrate that individual mutations in cbEGF modules can affect these modules differentially and may suggest an explanation for some genotype-phenotype relationships in MFS.  相似文献   

6.
The largest group of disease-causing mutations affecting calcium-binding epidermal growth factor-like (cbEGF) domain function in a wide variety of extracellular and transmembrane proteins is that which results in cysteine substitutions. Although known to introduce proteolytic susceptibility, the detailed structural consequences of cysteine substitutions in cbEGF domains are unknown. Here, we studied pathogenic mutations C1977Y and C1977R, which affect cbEGF30 of human fibrillin-1, in a recombinant three cbEGF domain fragment (cbEGF29-31). Limited proteolysis, 1H NMR, and calcium chelation studies have been used to probe the effect of each substitution on cbEGF30 and its flanking domains. Analysis of the wild-type fragment identified two high affinity and one low affinity calcium-binding sites. Each substitution caused the loss of high affinity calcium binding to cbEGF30, consistent with intradomain misfolding, but the calcium binding properties of cbEGF29 and cbEGF31 were surprisingly unaffected. Further analysis of mutant fragments showed that domain packing of cbEGF29-30, but not cbEGF30-31, was disrupted. These data demonstrate that C1977Y and C1977R have localized structural effects, confined to the N-terminal end of the mutant domain, which disrupt domain packing. Cysteine substitutions affecting other cbEGF disulfide bonds are likely to have different effects. This proposed structural heterogeneity may underlie the observed differences in stability and cellular trafficking of proteins containing such changes.  相似文献   

7.
Human fibrillin-1, an extracellular matrix glycoprotein, has a modular organization that includes 43 calcium-binding epidermal growth factor-like (cbEGF) domains arranged as multiple tandem repeats. A missense mutation that changes a highly conserved glycine to serine (G1127S) has been identified in cbEGF13, which results in a variant of Marfan syndrome, a connective tissue disease. Previous experiments on isolated cbEGF13 and a cbEGF13-14 pair indicated that the G1127S mutation caused defective folding of cbEGF13 but not cbEGF14. We have used limited proteolysis methods and two-dimensional NMR spectroscopy to identify the structural consequences of this mutation in a covalently linked cbEGF12-13 pair and a cbEGF12-14 triple domain construct. Protease digestion studies of the cbEGF12-13 G1127S mutant pair indicated that both cbEGF12 and 13 retained similar calcium binding properties and thus tertiary structure to the normal domain pair, because all identified cleavage sites showed calcium-dependent protection from proteolysis. However, small changes in the conformation of cbEGF13 G1127S, revealed by the presence of a new protease-sensitive site and comparative two-dimensional NOESY data, suggested that the fold of the mutant domain was not identical to the wild-type, but was native-like. Additional cleavage sites identified in cbEGF12-14 G1127S indicated further subtle changes within the mutant domain but not the flanking domains. We have concluded the following in this study. (i) Covalent linkage of cbEGF12 preserves the native-like fold of cbEGF13 G1127S and (ii) conformational effects introduced by G1127S are localized to cbEGF13. This study demonstrates that missense mutations in fibrillin-1 cbEGF domains can cause short range structural effects in addition to long range effects previously observed with a E1073K mutation in cbEGF12.  相似文献   

8.
Fibrillin-1 is a large extracellular matrix glycoprotein which assembles to form 10-12 nm microfibrils in extracellular matrix. Mutations in the human fibrillin-1 gene (FBN-1) cause the connective tissue disease Marfan syndrome and related disorders, which are characterised by defects in the skeletal, cardiovascular and ocular systems of the body. Fibrillin-1 has a striking modular organisation which is dominated by multiple tandem repeats of the calcium binding epidermal growth factor-like (cbEGF) domain. This review focuses on recent studies which have investigated the structural and functional role of calcium binding to cbEGF domains in fibrillin-1 and 10-12 nm microfibrils.  相似文献   

9.
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.  相似文献   

10.
Calcium binding (cb) epidermal growth factor-like (EGF) domains are found in a wide variety of extracellular proteins with diverse functions. In several proteins, including the fibrillins (1 and 2), the low-density lipoprotein receptor, the Notch receptor and related molecules, these domains are organised as multiple tandem repeats. The functional importance of calcium-binding by EGF domains has been underscored by the identification of missense mutations associated with defective calcium-binding, which have been linked to human diseases. Here, we present (15)N backbone relaxation data for a pair of cbEGF domains from fibrillin-1, the defective protein in the Marfan syndrome. The data were best fit using a symmetric top model, confirming the extended conformation of the cbEGF domain pair. Our data demonstrate that calcium plays a key role in stabilising the rigidity of the domain pair on the pico- to millisecond time-scale. Strikingly, the most dynamically stable region of the construct is centred about the domain interface. These results provide important insight into the properties of intact fibrillin-1, the consequences of Marfan syndrome causing mutations, and the ultrastructure of fibrillins and other extracellular matrix proteins.  相似文献   

11.
Li D  Yu J  Gu F  Pang X  Ma X  Li R  Liu N  Ma X 《Genetic testing》2008,12(2):325-330
Mutations in the fibrillin-1 (FBN1) gene have been identified in patients with Marfan syndrome (MFS) and Marfan-like connective tissue disorders. In this study, two Chinese families were recruited. The patients in family 1 were well characterized with MFS, while those in family 2 displayed Marfan-like disorders such as ectopia lentis (EL) and marfanoid habitus, but did not develop cardiovascular diseases. We aimed to analyze the pathogenic mutations and their relationships with phenotypes in these two Chinese families. All participants underwent complete physical, ophthalmic, and cardiovascular examinations. The 65 exons and flanking intronic sequences of FBN1 were amplified by polymerase chain reaction, and screened for mutations by denaturing high-performance liquid chromatography and sequencing. One hundred and fifteen unrelated controls were analyzed using the same methods to confirm the mutations. In family 1, we identified the mutation p.C499S in the calcium-binding epidermal growth factor (cbEGF)-like domain 3 of FBN1. In family 2, the mutation p.C908Y was identified in an interdomain region of the hybrid motif 2 linked to the cbEGF-like domain 10. It can be concluded that FBN1 mutations involving cysteine substitutions are usually associated with MFS and EL with some MFS features. Moreover, pathology seemed more serious when the mutations disrupted the three disulfide bridges in the cbEGF-like domains, which was more likely to cause typical MFS than if the mutations occurred in the hybrid motifs. Our data preliminarily establish a genotype-phenotype correlation in the diagnostic process of MFS and predominant EL with Marfan-like features.  相似文献   

12.
The calcium-binding epidermal growth factor-like (cbEGF) domain is a common structural motif in extracellular and transmembrane proteins. K(d) values for Ca2+ vary from the millimolar to nanomolar range; however the molecular basis for this variation is poorly understood. We have measured K(d) values for six fibrillin-1 cbEGF domains, each preceded by a transforming growth factor beta-binding protein-like (TB) domain. Using NMR and titration with chromophoric chelators, we found that K(d) values varied by five orders of magnitude. Interdomain hydrophobic contacts between TB-cbEGF domains were studied by site-directed mutagenesis and could be correlated directly with Ca2+ affinity. Furthermore, in TB-cbEGF pairs that displayed high-affinity binding, NMR studies showed that TB-cbEGF interface formation was strongly Ca2+-dependent. We suggest that Ca2+ affinity is a measure of interface formation in both homologous and heterologous cbEGF domain pairs, thus providing a measure of flexibility in proteins with multiple cbEGF domains. These data highlight the versatile role of the cbEGF domain in fine tuning the regional flexibility of proteins and provide new constraints for the organization of fibrillin-1 within 10-12-nm microfibrils of the extracellular matrix.  相似文献   

13.
Homocystinuria caused by cystathionine-β-synthase deficiency represents a severe form of homocysteinemias, which generally result in various degrees of elevated plasma homocysteine levels. Marfan syndrome is caused by mutations in fibrillin-1, which is one of the major constituents of connective tissue microfibrils. Despite the fundamentally different origins, both diseases share common clinical symptoms in the connective tissue such as long bone overgrowth, scoliosis, and ectopia lentis, whereas they differ in others. Fibrillin-1 contains ∼13% cysteine residues and can be modified by homocysteine. We report here that homocysteinylation affects functional properties of fibrillin-1 and tropoelastin. We used recombinant fragments spanning the entire fibrillin-1 molecule to demonstrate that homocysteinylation, but not cysteinylation leads to abnormal self-interaction, which was attributed to a reduced amount of multimerization of the fibrillin-1 C terminus. The deposition of the fibrillin-1 network by human dermal fibroblasts was greatly reduced by homocysteine, but not by cysteine. Furthermore, homocysteinylation, but not cysteinylation of elastin-like polypeptides resulted in modified coacervation properties. In summary, the results provide new insights into pathogenetic mechanisms potentially involved in cystathionine-β-synthase-deficient homocystinuria.  相似文献   

14.
Mutations in the gene encoding extracellular glycoprotein fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study, eight mutations have been detected in MFS patients by heteroduplex analysis. These comprise two missense mutations, C1835Y and C2258Y in calcium-binding epidermal growth factor-like domains, two nonsense mutations, R1541X and R2394X in transforming growth factor beta1-binding protein-like domains, one splice site mutation, which has been detected previously, and three small insertions or deletions resulting in a frameshift. Fibroblast cells have been established from seven of the MFS patients and the biochemical effects of the mutations on fibrillin-1 synthesis and secretion assessed by pulse-chase analysis. Each cysteine mutation resulted in the delayed secretion of fibrillin-1 and both nonsense and frameshift mutations caused reduced levels of synthesis and/or deposition of fibrillin-1. Indirect immunofluorescence and rotary shadowing electron microscopy analysis of fibrillin microfibrils revealed no major differences between normal and patient samples. We discuss the relative merits of the biochemical techniques used in this study.  相似文献   

15.
Marfan syndrome (MFS) is a systemic disorder of the connective tissues caused by insufficient fibrillin-1 microfibril formation and can cause cardiac complications, emphysema, ocular lens dislocation, and severe periodontal disease. ADAMTSL6β (A disintegrin-like metalloprotease domain with thrombospondin type I motifs-like 6β) is a microfibril-associated extracellular matrix protein expressed in various connective tissues that has been implicated in fibrillin-1 microfibril assembly. We here report that ADAMTSL6β plays an essential role in the development and regeneration of connective tissues. ADAMTSL6β expression rescues microfibril disorder after periodontal ligament injury in an MFS mouse model through the promotion of fibrillin-1 microfibril assembly. In addition, improved fibrillin-1 assembly in MFS mice following the administration of ADAMTSL6β attenuates the overactivation of TGF-β signals associated with the increased release of active TGF-β from disrupted fibrillin-1 microfibrils within periodontal ligaments. Our current data thus demonstrate the essential contribution of ADAMTSL6β to fibrillin-1 microfibril formation. These findings also suggest a new therapeutic strategy for the treatment of MFS through ADAMTSL6β-mediated fibrillin-1 microfibril assembly.  相似文献   

16.
BACKGROUND: From the observed structure and sequence of a pair of calcium binding (cb) epidermal growth factor-like (EGF) domains from human fibrillin-1, we proposed that many tandem cbEGF domains adopt a conserved relative conformation. The low-density lipoprotein receptor (LDLR), which is functionally unrelated to fibrillin-1, contains a single pair of EGF domains that was chosen for study in the validation of this hypothesis. The LDLR is the protein that is defective in familial hypercholesterolaemia, a common genetic disorder that predisposes individuals to cardiovascular complications and premature death. RESULTS: Here, we present the solution structure of the first two EGF domains from the LDL receptor, determined using conventional NMR restraints and residual dipolar couplings. The cbEGF domains have an elongated, rod-like arrangement, as predicted. The new structure allows a detailed assessment of the consequences of mutations associated with familial hypercholesterolaemia to be made. CONCLUSIONS: The validation of the conserved arrangement of EGF domains in functionally distinct proteins has important implications for structural genomics, since multiple tandem cbEGF pairs have been identified in many essential proteins that are implicated in human disease. Our results provide the means to use homology modeling to probe structure-function relationships in this diverse family of proteins and may hold the potential for the design of novel diagnostics and therapies in the future.  相似文献   

17.
Almost all TGF-beta is secreted as part of a large latent complex. This complex is formed from three molecules, a latent transforming growth factor-beta binding protein (LTBP), which plays roles in targeting and activation, a latency associated peptide (LAP), which regulates latency, and the TGF-beta cytokine. LAP is the TGF-beta pro-peptide that is cleaved intracellularly prior to secretion, and TGF-beta binds non-covalently to LAP. Formation of the large latent complex is important for the efficient secretion of TGF-beta. Previous studies have revealed that the LTBP-LAP interaction is mediated by intracellular exchange of a single disulphide bond within the third, and only the third, TB domain (TB3) with LAP. We have previously reported the structure of a homologous TB domain from fibrillin-1. However, TB3 contains a two amino acid insertion, not found in fibrillin-1 TB domains, which is not amenable to molecular modelling. In order to clarify the basis of TB domain function, we have determined the solution NMR structure of TB3(LTBP1). Comparison with the fibrillin-1 TB domain reveals that the two-residue insertion is associated with a significant increase in solvent accessibility of one of the disulphide bonds (linking the second and sixth cysteine residues). Site-directed mutagenesis and NMR studies indicate that this is the only disulphide bond that can be removed without perturbing the TB domain fold. Furthermore, a ring of negatively charged residues has been identified that surrounds this disulphide bond. Homology modelling suggests that the surface properties of TB3 domains from different LTBP isoforms correlate with binding activities. This research provides testable hypotheses regarding the molecular basis of complex formation between LTBPs and LAPs.  相似文献   

18.
Homocystinuria is a genetic disorder resulting in elevated levels of homocysteine in plasma and tissues. Some of the skeletal and ocular symptoms such as long bone overgrowth, scoliosis, and ectopia lentis overlap with symptoms seen in Marfan syndrome. Marfan syndrome is caused by mutations in the extracellular matrix protein fibrillin-1. We previously showed that fibrillin-1 is a target for homocysteine and that the deposition of homocysteinylated fibrillin-1 in the extracellular matrix is compromised. Since the assembly of fibrillin-1 is critically dependent on fibronectin, we analyzed the consequences of fibronectin homocysteinylation and its interaction with fibrillin-1. Cellular fibronectin and proteolytic fragments were homocysteinylated and tested in various interaction assays with recombinant fibrillin-1 and heparin. Fibronectin homocysteinylation consistently compromised the fibronectin-fibrillin-1 interaction, while the interaction with heparin was not affected. Fibronectin homocysteinylation, but not cysteinylation, reduced the fibronectin dimers to monomers as shown by Western blotting. ELISA analyses of homocysteinylated fibronectin with three monoclonal antibodies demonstrated structural changes in the disulfide-containing FNI domains FNI(2), FNI(4), and FNI(9). Using fluorescently labeled fibronectin, we studied the consequence of fibronectin homocysteinylation on assembly in cell culture. Modified fibronectin showed deficiencies in denovo matrix incorporation and initial assembly. In conclusion, we define here characteristic structural changes of fibronectin upon homocysteinylation that translate into functional deficiencies in the fibronectin-fibrillin-1 interaction and in fibronectin assembly. Since fibronectin is a major organizer of various extracellular protein networks, these structural and functional alterations may contribute to the pathogenesis of homocystinuria and Marfan syndrome.  相似文献   

19.
X Yuan  A K Downing  V Knott    P A Handford 《The EMBO journal》1997,16(22):6659-6666
Here we describe the high resolution nuclear magnetic resonance (NMR) structure of a transforming growth factor beta (TGF-beta)-binding protein-like (TB) domain, which comes from human fibrillin-1, the protein defective in the Marfan syndrome (MFS). This domain is found in fibrillins and latent TGF-beta-binding proteins (LTBPs) which are localized to fibrillar structures in the extracellular matrix. The TB domain manifests a novel fold which is globular and comprises six antiparallel beta-strands and two alpha-helices. An unusual cysteine triplet conserved in the sequences of TB domains is localized to the hydrophobic core, at the C-terminus of an alpha-helix. The structure is stabilized by four disulfide bonds which pair in a 1-3, 2-6, 4-7, 5-8 pattern, two of which are solvent exposed. Analyses of MFS-causing mutations and the fibrillin-1 cell-binding RGD site provide the first clues to the surface specificity of TB domain interactions. Modelling of a homologous TB domain from LTBP-1 (residues 1018-1080) suggests that hydrophobic contacts may play a role in its interaction with the TGF-beta1 latency-associated peptide.  相似文献   

20.
Most extracellular proteins consist of various modules with distinct functions. Mutations in one common type, the calcium-binding epidermal growth factor-like module (cbEGF), can lead to a variety of genetic disorders. Here, we describe as a model system structural and functional consequences of two typical mutations in cbEGF modules of fibrillin-1 (N548I, E1073K), resulting in the Marfan syndrome. Large (80-120 kDa) wild-type and mutated polypeptides were recombinantly expressed in mammalian cells. Both mutations did not alter synthesis and secretion of the polypeptides into the culture medium. Electron microscopy after rotary shadowing and comparison of circular dichroism spectra exhibited minor structural differences between the wild-type and mutated forms. The mutated polypeptides were significantly more susceptible to proteolytic degradation by a variety of proteases as compared with their wild-type counterparts. Most of the sensitive cleavage sites were mapped close to the mutations, indicating local structural changes within the mutated cbEGF modules. Other cleavage sites, however, were observed at distances beyond the domain containing the mutation, suggesting longer range structural effects within tandemly repeated cbEGF modules. We suggest that proteolytic degradation of mutated fibrillin-1 may play an important role in the pathogenesis of Marfan syndrome and related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号