首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various early biochemical events have been observed after the addition of growth factors to quiescent cultures of 3T3 cells; however, the cascade of events which take place in the cells after growth-factor addition is not yet entirely known. Our results show that the addition of a mixture of two growth factors, i.e., Epidermal Growth Factor (EGF) and insulin, to quiescent cultures of 3T3 cells rapidly stimulated phosphate uptake and ATP turnover. Our present and previous results suggest that the increase in phosphate uptake is the consequence of the stimulation of ATP synthesis. This stimulation was not simply a consequence of an increase in oxidative phosphorylation or in glucose transport and metabolism. The change in ATP turnover was an early event observed as soon as 5 min after growth-factor addition; furthermore, it was not dependent on protein synthesis. This change may therefore be the result of post-synthetic modification of enzymes by phosphorylation. We do not know what cellular process is responsible for the increase in ATP turnover. Since growth-factor addition rapidly enhanced ATP degradation in quiescent 3T3 cell cultures, we assumed that this increase is the result of an increase in ATP degradation. We know that it was not due to a stimulation of an oligomycin-sensitive ATPase. We verified that it was not the consequence of early biochemical events like an increase in Na+/K+ ATPase or a stimulation of RNA or protein synthesis. However, it is of interest to note that the stimulation of ATP turnover due to the growth-factor addition was inhibited by quercetin.  相似文献   

2.
Exogenous ATP has been shown to cause a rapid and reversible increase in permeability in transformed 3T3 cells (3T6 and SV3T3) but not in untransformed 3T3 cells. The cells remain viable, but lose intracellular acid-soluble pools. Treatment of transformed cells with ATP greatly reduces incorporation of 14C-leucine into protein, which is restored by the incubation of the cells with Dulbecco's modified Eagle's medium or by the external additions of certain ions and energy sources. tRNA is not required for the restoration of protein synthesis. In the permeabilized cells the energy for protein synthesis can be provided by glycolysis, oxidative phosphorylation, or direct addition of ATP. These studies demonstrate the usefulness of this method for studying the control of metabolism and macromolecular synthesis in monolayer cultures of transformed mammalian cells.  相似文献   

3.
Platelet-derived growth factor (PDGF) and platelet-poor plasma, which lacks PDGF, both induce a rapid increase in the rate of total protein synthesis within quiescent, density-arrested Balb/c-3T3 cells. This stimulation of protein synthesis is associated with an increased aggregation of ribosomes into polyribosomes. Nuclear functions are not required for this response, as demonstrated by the observation that this stimulation of protein synthesis occurs in cells pretreated with actinomycin D and in enucleated cells (cytoplasts). The response to PDGF persists even after PDGF has been removed from the culture medium, but in contrast, when plasma is removed from the medium, polysomes disaggregate and protein synthesis declines. PDGF and plasma do not function synergistically to increase protein synthesis, whereas they do to induce optimum DNA synthesis. Thus stimulation of the translational apparatus may be necessary for the mitogenic response of Balb/c-3T3 cells to growth factors, but it is not by itself sufficient.  相似文献   

4.
Polypeptide growth factors that stimulate cell proliferation bind to cell surface receptors and activate intracellular signal transduction pathways. One major signalling pathway, initiated by phosphatidylinositol (PI) turnover, involves activation of protein kinase C. Some polypeptide growth factors, including mitogens that activate protein kinase C, induce a rapid increase in expression of the proto-oncogenes, c-myc and c-fos. In order to characterize the signal transduction pathways responsible for proto-oncogene activation, we treated Swiss 3T3 cells with the tumor promoter phorbol dibutyrate to generate cells deficient in protein kinase C. These cells were then stimulated with platelet extract, bombesin, or epidermal growth factor (EGF) and the levels of c-myc and c-fos mRNA were determined. Platelet extract or bombesin, which stimulate PI turnover, were substantially weaker inducers of c-myc and c-fos mRNA levels in the protein kinase C-depleted cells, although some variability with platelet extract was noted. EGF, which does not stimulate PI turnover in several cell systems, was by contrast a potent inducer of both proto-oncogenes whether or not the cells were deficient in protein kinase C. Pretreatment of cells with phorbol dibutyrate caused little or no change in the basal levels of c-myc or c-fos mRNA, but led to a small but significant increase in basal levels of ornithine decarboxylase mRNA. These results demonstrate that EGF and growth factors that activate PI turnover induce expression of the c-myc and c-fos proto-oncogenes through different pathways.  相似文献   

5.
We have demonstrated previously a rapid increase in ATP turnover soon after adding epidermal growth factor (EGF) and insulin to quiescent cultures of Swiss 3T3 cells. In the present work, we tried to determine whether this increase could be correlated with the early stimulation by growth factors of cell movements. We showed that cytochalasin B (CB), in complete or glucose-free medium, inhibited this early increase caused by growth factors, in phosphate incorporation in small organic acid-soluble compounds (Po). Cytochalasin D (CD) specifically inhibited the stimulation caused by growth factors of Po labelling and ATP turnover, but lacked all inhibitory effect on unstimulated cells. The inhibitory effect of CD was transient. We hypothesize that addition of EGF and insulin to quiescent 3T3 cell cultures induces a rapid and transient change in cell movements, which could be responsible for about half of the early increase in ATP degradation and turnover.  相似文献   

6.
We previously shown a rapid increase in ATP turnover after addition of epidermal growth factor and insulin to quiescent 3T3 cell cultures. Here, the relationship between this increase in ATP turnover and the activation by growth factors of Na+/H+ and Na+/K+ exchange systems was studied. Our results show that alkalinization of the medium enhances ATP turnover but they do not support the assumption that stimulation by growth factors of the Na+/H+ exchange induces an increase in ATP turnover since this increase was not inhibited by amiloride. Conversely, when ATP synthesis was abolished, the increase, in intracellular pH, by growth factors, was significantly decreased.  相似文献   

7.
We recently reported that extracellular ATP was mitogenic for Swiss 3T3, 3T6, and A431 cells (Huang et al.: Proc. Natl. Acad. Sci. USA, 86:7904-7908, 1989). Here we examined the possible involvement of activation of the protein kinase C (PKC) signal transduction pathway in the mechanism of action of extracellular ATP. A potent synergistic stimulation of DNA synthesis in quiescent cultures of 3T3 and 3T6 cells was observed when ATP was presented in combination with growth factors that activate PKC, such as bombesin, vasopressin, or tumor-promoting phorbol esters. This finding suggests that ATP and these mitogens do not act through a common mechanism. In contrast, ATP was unable to show synergism with phorbol esters in A431 cells. We discovered striking differences when we examined the kinetics of formation of diacylglycerol (DAG) stimulated by ATP among these cell lines. Thus, ATP stimulated a sustained biphasic increase of DAG in A431 cells, but only a rapid transient increase of DAG formation was observed in 3T3 and 3T6 cells. The breakdown of phosphatidylcholine was stimulated by ATP in A431 cells; however, a significantly reduced effect was displayed in 3T6 cells. Furthermore, we found that the diacylglycerol-kinase inhibitor, 1-monooleoylglycerol, greatly potentiated ATP-stimulated DNA synthesis in A431 cells. Finally, down-regulation of PKC by long-term exposure to phorbol dibutyrate (PDBu) prevented stimulation of DNA synthesis induced by bombesin, vasopressin, or phorbol esters in 3T3 or 3T6 cells, while it had no such effect on ATP-stimulated mitogenesis in the presence of insulin or epidermal growth factor. On the other hand, PDBu-mediated down-regulation of PKC partially inhibited [3H [thymidine incorporation stimulated by ATP in A431 cells. Taken together, we conclude that a protein kinase C-dependent pathway is partially involved in ATP-stimulated DNA synthesis in A431 cells, but a protein kinase C-independent pathway exists in 3T3 and 3T6 cells. Pertussis toxin (PTX) inhibited the sustained phase of DAG formation and the breakdown of phosphatidylcholine stimulated by ATP in A431 cells. This suggests involvement of a PTX-sensitive G protein.  相似文献   

8.
The contrasting control of lysosomal proteinases, protein turnover and proliferation was studied in 3T3 and SV-3T3 (SV-40-virus-transformed 3T3) cells. 1. In 3T3 cells, net protein accumulation proceeded from 5%/h (doubling time, T(d)=14h) in growing cells to 0%/h as cells became quiescent. SV-3T3 cells never ceased to gain protein, but rather decreased their protein accumulation rate from 6-7%/h (T(d)=10-12h) to 2%/h (T(d)=35-40h) just before culture death in unchanged medium. 2. In both cell types the rates of protein synthesis per unit of protein (a) were proportional to the initial serum concentration from 0 to 6%, and (b) declined under progressive depletion of undefined serum growth factors. In depleted growth medium, leucine incorporation per unit of protein in 3T3 and SV-3T3 cells declined to almost equal synthetic rates while the 3T3 cell existed in a steady state of zero net gain, and the SV-3T3 cell continued to gain protein at a rate of 2%/h. 3. Whereas a large fraction of the control of 3T3-cell net protein accumulation can be accounted for by an increase in degradation from 1%/h to 3%/h, the SV-3T3 cell did not exhibit a growth-related increase in degradation appreciably above 1%/h. 4. Thus, by using first-order kinetics, the continued net protein accumulation of the transformed cell can be accounted for by a failure to increase protein degradation, whereas fractional synthesis can be made to decline to a rate similar to that in the quiescent non-transformed cell. 5. Upon acute serum deprivation, both cell types similarly exhibited small rapid increases in proteolysis independent of cell growth state or lysosomal enzyme status. 6. The 3T3 cell increased its lysosomal proteinase activity in conjunction with increase in the growth-state-dependent proteolytic mechanism; however, the SV-3T3 cell failed to increase lysosomal proteinases or the growth-state-dependent proteolytic mechanism.  相似文献   

9.
10.
The induction of T cell unresponsiveness by rapidly modulating CD3   总被引:6,自引:0,他引:6  
The immunomodulatory effects of an IgM anti-CD3 mAb (38.1) were investigated. 38.1 was distinct from other anti-CD3 mAb, in that it was rapidly modulated from the cell surface in the absence of a secondary antibody. Although 38.1 induced an immediate increase in intracellular free calcium [Ca2+]i by highly purified T cells, it did not induce entry of the cells into the cell cycle in the absence of accessory cells (AC) or a protein kinase C-activating phorbol ester. Clearing of 38.1 from the surface of AC-depleted T cells, documented both by immunofluorescence and by functional activity, was rapid, with markedly reduced levels of initially bound mAb observed after a 1 to 2 h incubation at 37 degrees C and complete modulation noted after a 5-h incubation. Despite rapid modulation of 38.1, the T cells continued to express substantial amounts of surface CD3, suggesting there is a rapid rate of turnover of CD3 molecules on resting T cells. After modulation of 38.1 bound CD3, T cells were markedly inhibited in their capacity to respond to PHA. Inhibition could be overcome by culturing the cells with supplemental AC or IL-2. The inhibitory effects of 38.1 could be mimicked by briefly pulsing cells with the calcium ionophore, ionomycin, that had no effect on surface expression of CD3. 38.1- or ionomycin-pulsed cells were inhibited in their subsequent response to PHA even when exposures were carried out in the presence of EGTA to prevent increases in [Ca2+]i from extracellular sources. Inhibition could not be accounted for by an inability of the ionomycin-treated or 38.1-modulated T cells to increase [Ca2+]i in response to PHA. These studies demonstrate that a state of T cell nonresponsiveness can be induced by modulating CD3 with an anti-CD3 mAb in the absence of co-stimulatory signals. A brief increase in [Ca2+]i resulting from mobilization of internal calcium stores appears to be sufficient to induce this state of T cell nonresponsiveness.  相似文献   

11.
A P Jarvis  C White  A Ball  S L Gupta  L Ratner  G C Sen  C Colby 《Cell》1978,14(4):879-887
Cytoplasmic extracts of untreated cultures of a virus-resistant mutant of mouse 3T6 cells, designated 3T6-VrB2, contain two double-stranded, RNA-activated enzyme activities associated with interferon action. These are the synthesis of a low molecular weight oligonucleotide inhibitor of cell-free protein synthesis from ATP, and the phosphorylation of a 67,000 dalton polypeptide by transfer of the gamma phosphate of ATP. Basal levels of both enzyme activities are detectable in extracts of untreated parental 3T6 cells, and are greatly enhanced upon interferon pretreatment. A procedure was developed, using a nonionic detergent to effect cell lysis, which allowed the analysis of the protein kinase activity from as few as 2 x 10(7) cells. Using this procedure, direct proportionalities were demonstrated between the concentration of interferon to which 3T6 cells were exposed, and both the level of protein kinase activity and the magnitude of the antiviral state were established in these cells. Furthermore, untreated cultures of 3T6-VrB2 exhibited both an antiviral state and an intracellular protein kinase activity equal to that of cultures of the parental 3T6 cells pretreated with a single concentration of mouse interferon.  相似文献   

12.
Incubation of quiescent cultures of Swiss 3T3 cells with epidermal growth factor (EGF) caused an increase in c-myc mRNA. Under these conditions, EGF did not induce phosphoinositide turnover, formation of diacylglycerol, formation of inositol tris-, bis-, and monophosphates, protein kinase C activation, or Ca2+ mobilization. Although it has been reported that both protein kinase C and Ca2+ may be responsible for the platelet-derived growth factor- and fibroblast growth factor-induced increases in c-myc mRNA in Swiss 3T3 cells (Kaibuchi, K., Tsuda, T., Kikuchi, A., Tanimoto, T., Yamashita, T., & Takai, Y. (1986) J. Biol. Chem. 261, 1187-1192), these results indicate that neither protein kinase C nor Ca2+ is involved in the EGF-induced increase in c-myc mRNA, and that an unidentified system may be involved in this reaction.  相似文献   

13.
These experiments were done to clarify that the differential effects of thyroxine (T(4)) and triiodothyronine (T(3)) on skeletal muscle protein turnover are caused by their roles on ATP production. Primary cultured chick muscle cells were treated with a physiological level of T(4) (60 ng/ml), T(3) (12 ng/ml), or ATP (0.5 mM) for 6 days and the protein content, ATP production, proteasome activity, and myofibrillar protein breakdown were measured. The protein content measured as an index of cell growth was not affected by T(4), T(3), or ATP. The cellular ATP level was increased by T(3) and ATP, but not by T(4). Proteasome activity and N(tau)-methylhistidine (MeHis) release measured as an index of myofiblillar protein breakdown was also increased by T(3) and ATP, but not by T(4). These results indicate that T(3) but not T(4) increases ATP production followed by an increase in proteasome activity, and thus stimulates myofibrillar proteolysis.  相似文献   

14.
1. At least 95% of the total protein of A31-3T3 cell cultures undergoes turnover. 2. First-order exponential kinetics were used to provide a crude approximation of averaged protein synthesis, Ks, degradation, Kd, and net accumulation, Ka, as cells ceased growth at near-confluent density in unchanged Dulbecco's medium containing 10% serum. The values of the relationship Ka = Ks - Kd were : 5%/h = 6%/h - 1%/h in growing cells, and 0%/h = 3%/h - 3%/h in steady-state resting cells. 3. As determined by comparison of the progress of protein synthesis and net protein accumulation, the time course of increase in protein degradation coincided with the onset of an increase in lysosomal proteinase activity and decrease in thymidine incorporation after approx. 2 days of exponential growth. 4. After acute serum deprivation, rapid increases in protein degradation of less than 1%/h could be superimposed on the prevailing degradation rate in either growing or resting cells. The results indicate that two proteolytic mechanisms can be distinguished on the basis of the kinetics of their alterations. A slow mechanism changes in relation to proliferative status and lysosomal enzyme elevation. A prompt mechanism, previously described by others, changes before changes in cell-cycle distribution or lysosomal proteinase activity. 5. When the serum concentration of growing cultures was decreased to 1% or 0.25%, then cessation of growth was accompanied by a lower steady-state protein turnover rate of 2.0%/h or 1.5%/h respectively. When growth ceased under conditions of overcrowded cultures, or severe nutrient insufficiency, protein turnover did not attain a final steady state, but declined continually into the death of the culture.  相似文献   

15.
The differentiation of mouse 3T3-L1 cells is characterized by an accumulation of cytosolic triglyceride and marked increase in many enzymatic activities involved in triglyceride biosynthesis. The specific activity of one such enzyme, pyruvate carboxylase, increases at least 20-fold and is due to a parallel increase in the intracellular concentration of the protein. Pulse-labeling experiments demonstrated that the increase in the specific activity of pyruvate carboxylase was due to an increase in the rate of enzyme synthesis. In the differentiated cell, pyruvate carboxylase represented 1.9% of the total cellular protein and 1% of the protein radiolabeled during a 1-h pulse. This was 35-and 28-fold higher than in the undifferentiated cell, respectively. The turnover of pyruvate carboxylase in the differentiated cell was similar to that in the undifferentiated cell with the enzyme having a half-life of 28-35 h. The half-life of apopyruvate carboxylase in avidin-treated 3T3-L1 cells was 24 h, indicating that the turnover of the apoenzyme was not significantly different than that of the holoenzyme. Radiolabeling pyruvate carboxylase with [14C]biotin and [3H]leucine demonstrated that the turnover of biotin associated with the enzyme was identical to the turnover of the enzymatic protein.  相似文献   

16.
In quiescent Balb/c 3T3 cells, competence factors such as platelet-derived growth factor and 12-O-tetradecanoylphorbol-13-acetate (TPA) activated MAP kinase, whereas progression factors such as insulin did not. Insulin was, however, capable of activating MAP kinase in cells pretreated with TPA. Moreover, TPA plus insulin activated MAP kinase more strongly and for a longer time period than did TPA alone. Treatment of Balb/c 3T3 cells with competence factors stimulated phosphorylation of the 350-kDa protein which was immunoprecipitated with antibodies against brain high-molecular-weight microtubule-associated protein MAP1, whereas insulin treatment did not stimulate the phosphorylation. Insulin could induce, however, further increase in the phosphorylation of the 350-kDa protein, when added simultaneously with TPA or added to the TPA-treated cells. The enhanced phosphorylation of the 350-kDa protein thus correlated with the MAP kinase activation. As insulin acts synergistically with TPA to induce initiation of DNA synthesis in the quiescent Balb/c 3T3 cells, it seems that activation of MAP kinase and enhanced phosphorylation of the 350-kDa protein are accompanied by the initiation of DNA synthesis.  相似文献   

17.
Addition of ATP to medium surrounding intact, transformed 3T3 cells activates the formation of aqueous channels in the plasma membrane. This results in efflux of nucleotide pools and ions and entry into the cytosol of charged, phosphorylated species. In such permeabilized cells, glycolysis is totally dependent on the external addition of glucose, inorganic phosphate, ADP, K+, Mg2+ and NAD+ which restore lactic acid formation to levels found in untreated cells. As expected, such reconstitution of glycolytic activity is found to restore intracellular ATP levels. This is accompanied by sealing of the membrane channels so that efflux of nucleotide pools ceases. Pyruvate, a substrate for mitochondrial ATP synthesis, when provided along with ADP and inorganic phosphate also produces sealing of the membrane channels. On the other hand, reactivation of pentose phosphate shunt activity, which does not lead to ATP synthesis, does not induce restoration of the membrane permeability barrier. Furthermore, compounds which lower the internal ATP pool prevent sealing, and also render the plasma membrane more sensitive to external ATP (Rozengurt and Heppel, '79). Sealing of aqueous channels following restoration of the internal ATP pool is associated with phosphorylation of the inner membrane surface, and is unaffected by inhibitors of protein synthesis, microfilament or microtubular assembly. These results indicate the probable role of intracellular ATP in the restoration and/or maintenance of an active membrane barrier against efflux of small molecules and ions in transformed 3T3 cells.  相似文献   

18.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

19.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

20.
The latent membrane protein (LMP) of Epstein-Barr virus functions as an oncogene in rodent cell lines (D. Wang, D. Liebowitz, and E. Kieff, Cell, 43: 831-840, 1985; V. R. Baichwal and B. Sugden, Oncogene, 2: 461-467, 1988) and, therefore, is likely to be essential for immortalization of human B-lymphocytes by Epstein-Barr virus. LMP has a short half-life in Epstein-Barr virus-infected B-lymphoblastoid cells (V. R. Baichwal and B. Sugden, J. Virol., 61: 866-875, 1987; K. P. Mann and D. Thorley-Lawson, J. Virol., 61: 2100-2108, 1987) and in LMP-transformed rodent cell lines (V. R. Baichwal and B. Sugden, Oncogene 2: 461-467, 1988). The hypothesis that the turnover of LMP functions to down-regulate LMP activity has been tested by determining whether the turnover of LMP resembles that of several receptors for growth factors and neurotransmitters. The rapid turnover of LMP in transformed BALB/c 3T3 cells is blocked by cycloheximide, which indicates that turnover requires ongoing protein synthesis. Greater than 90% of newly synthesized LMP is present at the cell surface within 20 min of synthesis, and the detectable protein remains at this location for up to 6 h. If cells are grown in the presence of cycloheximide such that turnover of LMP is inhibited, an internalized pool of LMP can be detected; this observation indicates that turnover of LMP is likely to be preceded by internalization and that, once internalized, LMP is rapidly degraded. Also, this result indicates that the degradation of LMP, as opposed to its internalization, requires ongoing protein synthesis. The turnover of LMP and its biological activity (as assayed by cytotoxicity) are not regulated by factor(s) present only in serum, because the half-life of LMP in cells maintained in serum-free medium does not differ from that in the same cells grown in 5% calf serum. The rapid turnover, the requirement of protein synthesis for turnover, and the internalization of LMP are consistent with the functioning of this protein as a (ligand-dependent or independent) cell surface receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号