首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The imprudent use of fossil fuels has resulted in high greenhouse gas (GHG) emissions, leading to climate change and global warming. Reduction in GHG emissions and energy insecurity imposed by the depleting fossil fuel reserves led to the search for alternative sustainable fuels. Hydrogen is a potential alternative energy carrier and is of particular interest because hydrogen combustion releases only water. Hydrogen is also an important industrial feedstock. As an alternative energy carrier, hydrogen can be used in fuel cells for power generation. Current hydrogen production mainly relies on fossil fuels and is usually energy and CO2-emission intensive, thus the use of fossil fuel-derived hydrogen as a carbon-free fuel source is fallacious. Biohydrogen production can be achieved via microbial methods, and the use of microalgae for hydrogen production is outstanding due to the carbon mitigating effects and the utilization of solar energy as an energy source by microalgae. This review provides comprehensive information on the mechanisms of hydrogen production by microalgae and the enzymes involved. The major challenges in the commercialization of microalgae-based photobiological hydrogen production are critically analyzed and future research perspectives are discussed. Life cycle analysis and economic assessment of hydrogen production by microalgae are also presented.  相似文献   

2.
In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low-input species such as Jatropha curcas , a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development.  相似文献   

3.
Bio-ethanol--the fuel of tomorrow from the residues of today   总被引:3,自引:0,他引:3  
The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. The most common renewable fuel today is ethanol produced from sugar or grain (starch); however, this raw material base will not be sufficient. Consequently, future large-scale use of ethanol will most certainly have to be based on production from lignocellulosic materials. This review gives an overview of the new technologies required and the advances achieved in recent years to bring lignocellulosic ethanol towards industrial production. One of the major challenges is to optimize the integration of process engineering, fermentation technology, enzyme engineering and metabolic engineering.  相似文献   

4.
由于温室气体的大量排放和对化石燃料的高度依赖,航空业的可持续发展得到了全世界的关注。生物航煤被认为是一种有前景的传统航空燃料替代品。本文概述了制备生物航煤的代表性工艺技术路线、发展现状以及生物航煤产业发展所面临的机遇和挑战。迄今为止,已经有多种生物航煤制备工艺得到美国材料实验协会(American Society for Testing and Materials, ASTM)认证。其中,酯和脂肪酸加氢是目前最为成熟、可以实现完全商业化的路径。考虑到技术经济性和成熟度,短期内,费托合成是比较有发展前景的工艺。  相似文献   

5.
Transport accounts for about one quarter of South Africa's final energy consumption. Most of the energy used is based on fossil fuels causing significant environmental burdens. This threat becomes even more dominant as a significant growth in transport demand is forecasted, especially in South Africa's economic hub, Gauteng province. The South African government has realized the potential of biofuel usage for reducing oil import dependency and greenhouse gas (GHG) and has hence developed a National Biofuels Industrial Strategy to enforce their use. However, there is limited experience in the country in commercial biofuel production and some of the proposed crops (i.e. rapeseed and sugar beet) have not been yet cultivated on a larger scale. Furthermore, there is only limited research available, looking at the feasibility of commercial scale biofuel production or abatement costs of GHG emissions. To assess the opportunities of biofuel production in South Africa, the production costs and consumer price levels of the fuels recommended by the national strategy are analysed in this article. Moreover, the lifecycle GHG emissions and mitigation costs are calculated compared to the calculated fossil fuel reference including coal to liquid (CTL) and gas to liquid (GTL) fuels. The results show that the cost for biofuel production in South Africa are currently significantly higher (between 30% and 80%) than for the reference fossil fuels. The lifecycle GHG emissions of biofuels (especially for sugar cane) are considerably lower (up to 45%) than the reference fossil GHG emissions. The resulting GHG abatement costs are between 1000 and 2500 ZAR2007 per saved ton of carbon dioxide equivalent, which is high compared to the current European CO2 market prices of ca. 143 ZAR2007 t?1. The analysis has shown that biofuel production and utilization in South Africa offers a significant GHG‐mitigation potential but at relatively high cost.  相似文献   

6.
Industrial symbiosis (IS) exchanges have been recognized to reduce greenhouse gas (GHG) emission, though methods for quantification of GHG emissions in IS exchanges are varied, and no standardized methods are available. This article proposes a practical approach to quantify total and allocated GHG emissions from IS exchanges by integrating the GHG protocol and life cycle assessment. The proposed method expands the system boundaries to include all IS companies, and the functional flow is set to be the sum of the main products. The total impact of a company is allocated to the main product. Three by‐product impact allocation methods of cutoff, avoidance, and 50/50 are proposed, and the total and distributed impacts of the IS systems in an industrial park are theoretically derived. The proposed method was tested to quantify GHG reduction in a real IS exchange developed between Korea Zinc (a zinc smelter) and Hankook Paper (a paper mill company) in the Ulsan Eco‐Industrial Park initiative. The total reduction of GHG emissions in this IS exchange, 60,522 tonnes of carbon dioxide per year, was the same in the GHG protocol, whereas GHG distribution between two companies depended on the allocation method. Given that the reduction of GHG emissions from IS exchanges is the product of the collaboration of giving companies and receiving companies, the 50/50 allocation method is best from an equivalent‐responsibility and benefit‐sharing perspective. However, this study suggests a more practical implementation approach based on a flexible and negotiable method of allocating the total GHG reduction between stakeholders.  相似文献   

7.
Studies of industrial symbiosis (IS) focus on the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are shared or exchanged among the actors of the system, thereby reducing the consumption of virgin material and energy inputs, and likewise the generation of waste and emissions. In this study, the environmental impacts of an industrial ecosystem centered around a pulp and paper mill and operating as an IS are analyzed using life cycle assessment (LCA). The system is compared with two hypothetical reference systems in which the actors would operate in isolation. Moreover, the system is analyzed further in order to identify possibilities for additional links between the actors. The results show that of the total life cycle impacts of the system, upstream processes made the greatest overall contribution to the results. Comparison with stand‐alone production shows that in the case studied, the industrial symbiosis results in modest improvements, 5% to 20% in most impact categories, in the overall environmental impacts of the system. Most of the benefits occur upstream through heat and electricity production for the local town. All in all it is recommended that when the environmental impacts of industrial symbiosis are assessed, the impacts occurring upstream should also be studied, not only the impacts within the ecosystem.  相似文献   

8.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

9.
Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials per ton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which cal-cination of limestone and the combustion of fuels each con-tribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis).
In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion ar-ticle (part II), some of the environmental challenges and op-portunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.  相似文献   

10.
China has more than 1,500 industrial parks, which, collectively, play a crucial role in facilitating industrialization and urbanization. A key characteristic of these parks is that most rely on shareable energy infrastructure, an efficient configuration that can also deliver substantial and sustainable reductions in greenhouse gas (GHG) emissions. This study offers strategies for mitigating GHG emissions from Chinese industrial parks. We focus on extensive data collection for the 106 industrial parks listed in the national demonstration eco‐industrial park (EIP) program. In doing so, we carefully examine the evolution of 608 serviceable energy infrastructure units by vintage year, fuel type, energy output, and technologies of combined heat and power units. We assess direct GHG emissions from both energy infrastructure and the parks, and then identify the features and driving forces of energy infrastructure development in the EIPs. We also offer recommendations for ways to mitigate the GHG emissions from these industrial parks. The energy infrastructure stocks in Chinese EIPs are characterized by heavy coal dependence (87% of capacity) and high ratios of direct GHG emissions versus the total direct emissions of the park (median value: 75.2%). These findings establish a baseline from which both technology and policy decisions can then be made in an informed way.  相似文献   

11.
木质纤维素生物质是地球上最丰富的可再生生物资源。随着化石能源的消耗及环境的污染,以取代石化燃料为目标的由生物质向生物燃料的转化受到了广泛的关注。木质纤维素有很强的天然抗降解屏障,需先通过物理、化学及微生物等手段进行预处理,进而以更低的成本和更高的效率转化为生物燃料及其他高附加值产品。本文在总结酸碱等传统预处理方法优缺点的基础上,综述了各种组合预处理对这些传统预处理方法的改进,以及γ-戊内酯预处理、低共熔溶剂预处理、微生物联合体生态位预处理这些新型预处理技术的研究进展,总结了木质素高值化过程中木质素的保护、解聚、改性的新方法,指出了预处理方法在工业生产中的应用及不足,以期为木质纤维素生物质转化的研究提供参考。  相似文献   

12.
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO2 into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.  相似文献   

13.
During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.  相似文献   

14.
Volatile organic compounds (VOCs) have a direct bearing on the levels of ozone and other reactive chemicals in the atmosphere and play an important role in determining air quality Anthropogenic emission of VOCs has greatly increased due to growing consumption of fossil fuels and related activities. This article presents an emissions inventory for VOCs emitted from anthropogenic soutres in India. VOC emissions factors for important source categories and activities are assembled from the literature and an effort is made to use Indian emission factors as far as possible. Important sources of VOCs include livestock, combustion of firewood and fossil fuels, rice paddy fields, manufacturing. petroleum (production and refining), natural gas (production and distribution), vehicular exhaust, and coal mining. The annual anthropogenic VOC emissions for India have been estimated to be 21 million metric tons (mt). A comparison of VOC emissions inventories for a group of countries varying in their industrial and economic development, in terms of income (gross domestic product, or GDP), population, and land area, reflects the differences among the countries. This VOC emissions inventory provides baseline information for comparisons over time and across countries. In addition, it may serve as an important tool for formulating national VOC control policies.  相似文献   

15.
Background The Swiss chemical industry produces large amounts of organic waste solvents. Some of these solvents cannot be recovered. A common option for the treatment of such organic waste solvents is the incineration in hazardous waste incinerators. Alternatively, the waste solvents can be used as fuel in cement production. On the one hand, solvent incineration in cement kilns saves fossil fuels such as coal and heavy fuel oil. On the other hand, fuel-bound emissions may change as well. These emission changes can either have a negative or a positive net ecological impact, depending on the chemical nature of the waste solvent used.Goal and Scope The aim of our work was to develop a multi-input allocation model, which allows one to calculate life cycle inventories for specific waste solvents. These LCIs can then be used in further applications, e.g. a comparison of different waste solvent treatment options. Results and Discussion A multi-input allocation model was developed that takes into account the physico-chemical properties of waste solvents such as elementary composition and net calorific value. The model is based on a set of equations and data on fuel mix, fuel composition as well as transfer coefficients for heavy metals. The model calculates “avoided inputs” and “changes in emissions” which arise from substituting fossil fuels with waste solvents. Life cycle inventories can be calculated for specific waste solvents if the elementary composition and the net calorific value are known. The application of the model is illustrated in a case study on four waste solvents. The results show that solvent incineration in cement kilns generally reduces the overall impact of clinker production because fossil fuels are replaced. A sensitivity analysis revealed that the model is especially sensitive to the fuel mix and coal properties, such as net calorific value as well as the content of nitrogen and carbon. The transfer coefficients are also uncertain, but this uncertainty is not relevant as the amount of heavy metal emitted into the atmosphere is small. Conclusions and Outlook The proposed model serves to calculate inventory data for the combustion of liquid alternative fuels such as waste solvents in cement kilns. Although our model represents Swiss cement production conditions, it can be applied to other countries by fitting the most sensitive parameters of fuel mix and coal properties. In case the technology used is very different to the Swiss situation, the transfer coefficients also need to be adapted.  相似文献   

16.
The identification of potential by‐product exchanges is important for fostering industrial symbiosis. To discover these potential exchanges, this article extends the analysis of local industrial symbiosis to a national scale. A waste input‐output table, which is a material flow accounting tool, was compiled and used as a database to examine the existing exchanges of by‐products. The supplies and demands of industrial wastes or by‐products were compared to highlight their potential use for promoting higher exchange flows. The analysis of the linkages indicated that the majority of each of the by‐products were reused by the few industries that had the technology and operational capacity for reuse. This finding is useful for determining which industries are good candidates for promoting further industrial symbiosis (IS). Based on a nation‐wide analysis that considered the industrial characteristics of Taiwan comprehensively, 23 types of major by‐products with greater reuse flows and 216 potential exchange patterns were identified between the industries. In addition, three types of eco‐industrial networks were characterized as follows according to their dominant types: (1) fossil fuel, metal, and mineral‐dominated; (2) agricultural and synthetic material‐dominated; and (3) information and communications technology (ICT) and chemical industry‐dominated eco‐industrial networks. This analysis highlights the resource exchange potentials and provides information to new firms for networking with existing businesses.  相似文献   

17.
Declining fossil fuels reserves, a need for increased energy security and concerns over carbon emissions from fossil fuel use are the global drivers for alternative, renewable, biosources of fuels and chemicals. In the present study the identification of long chain (C29–C33) saturated hydrocarbons from Nicotiana glauca leaves is reported. The occurrence of these hydrocarbons was detected by gas chromatography–mass spectrometry (GC–MS) and identification confirmed by comparison of physico-chemical properties displayed by the authentic standards available. A simple, robust procedure was developed to enable the generation of an extract containing a high percentage of hydrocarbons (6.3% by weight of dried leaf material) higher than previous reports in other higher plant species consequently, it is concluded that N. glauca could be a crop of greater importance than previously recognised for biofuel production. The plant can be grown on marginal lands, negating the need to compete with food crops or farmland, and the hydrocarbon extract can be produced in a non-invasive manner, leaving remaining biomass intact for bioethanol production and the generation of valuable co-products.  相似文献   

18.
The industrial park of Herdersbrug (Brugge, Flanders, Belgium) comprises 92 small and medium‐sized enterprises, a waste‐to‐energy incinerator, and a power plant (not included in the study) on its site. To study the carbon dioxide (CO2) neutrality of the park, we made a park‐wide inventory for 2007 of the CO2 emissions due to energy consumption (electricity and fossil fuel) and waste incineration, as well as an inventory of the existing renewable electricity and heat generation. The definition of CO2 neutrality in Flanders only considers CO2 released as a consequence of consumption or generation of electricity, not the CO2 emitted when fossil fuel is consumed for heat generation. To further decrease or avoid CO2 emissions, we project and evaluate measures to increase renewable energy generation. The 21 kilotons (kt) of CO2 emitted due to electricity consumption are more than compensated by the 25 kt of CO2 avoided by generation of renewable electricity. Herdersbrug Industrial Park is thus CO2 neutral, according to the definition of the Flemish government. Only a small fraction (6.6%) of the CO2 emitted as a consequence of fossil fuel consumption (heat generation) and waste incineration is compensated by existing and projected measures for renewable heat generation. Of the total CO2 emission (149 kt) due to energy consumption (electricity + heat generation) and waste incineration on the Herdersbrug Industrial Park in 2007, 70.5% is compensated by existing and projected renewable energy generated in the park. Forty‐seven percent of the yearly avoided CO2 corresponds to renewable energy generated from waste incineration and biomass fermentation.  相似文献   

19.
Photosynthetic cyanobacteria have attracted interest as production organisms for third‐generation biofuels, where sunlight and CO2 are used by microbes directly to synthesize fuel molecules. A particularly suitable biofuel is n‐butanol, and there have been several laboratory reports of genetically engineered photosynthetic cyanobacteria capable of synthesizing and secreting n‐butanol. This work evaluates the environmental impacts and cumulative energy demand (CED) of cyanobacteria‐produced n‐butanol through a cradle‐to‐grave consequential life cycle assessment (LCA). A hypothetical production plant in northern Sweden (area 1 ha, producing 5–85 m3 n‐butanol per year) was considered, and a range of cultivation formats and cellular productivity scenarios assessed. Depending on the scenario, greenhouse gas emissions (GHGe) ranged from 16.9 to 58.6 gCO2eq/MJBuOH and the CED from 3.8 to 13 MJ/MJBuOH. Only with the assumption of a nearby paper mill to supply waste sources for heat and CO2 was the sustainability requirement of at least 60% GHGe savings compared to fossil fuels reached, though placement in northern Sweden reduced energy needed for reactor cooling. A high CED in all scenarios shows that significant metabolic engineering is necessary, such as a carbon partitioning of >90% to n‐butanol, as well as improved light utilization, to begin to displace fossil fuels or even first‐ and second‐generation bioethanol.  相似文献   

20.
This study extends existing life cycle assessment (LCA) literature by assessing seven environmental burdens and an overall monetized environmental score for eight recycle, bury, or burn options to manage clean wood wastes generated at construction and demolition activity sites. The study assesses direct environmental impacts along with substitution effects from displacing fossil fuels and managed forest wood sourcing activities. Follow‐on effects on forest carbon stocks, land use, and fuel markets are not assessed. Sensitivity analysis addresses landfill carbon storage and biodegradation rates, atmospheric emissions controls, displaced fuel types, and two alternative carbon accounting methods commonly used for waste management LCAs. Base‐case carbon accounting considers emissions and uptakes of all biogenic and fossil carbon compounds, including biogenic carbon dioxide. Base‐case results show that recycling options (recycling into reconstituted wood products or into wood pulp for papermaking) rank better than all burning or burying options for overall monetized score as well as for climate impacts, except that wood substitution for coal in industrial boilers is slightly better than recycling for the climate. Wood substitution for natural gas boiler fuel has the highest environmental impacts. Sensitivity analysis shows the overall monetized score rankings for recycling options to be robust except for the carbon accounting method, for which all options are highly sensitive. Under one of the alternative methods, wood substitution for coal boiler fuel and landfill options with high methane capture efficiency are the best for the overall score; recycling options are next to the worst. Under the other accounting alternative, wood substitution for coal and waste‐to‐energy are the best, followed by recycling options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号