首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of flowering is not only important for reproduction,but also plays a key role in the processes of domestication and adaptation.To reveal the genetic architecture for flowering time and photoperiod sensitivity,a comprehensive evaluation of the relevant literature was performed and followed by meta analysis.A total of 25 synthetic consensus quantitative trait loci(QTL)and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development.Besides,a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits.Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize(Zea mays L.).Our results suggest that the combination of literature review,meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering.Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection,such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation.  相似文献   

2.
Genetic architecture of flowering time in maize was addressed by synthesizing a total of 313 quantitative trait loci (QTL) available for this trait. These were analyzed first with an overview statistic that highlighted regions of key importance and then with a meta-analysis method that yielded a synthetic genetic model with 62 consensus QTL. Six of these displayed a major effect. Meta-analysis led in this case to a twofold increase in the precision in QTL position estimation, when compared to the most precise initial QTL position within the corresponding region. The 62 consensus QTL were compared first to the positions of the few flowering-time candidate genes that have been mapped in maize. We then projected rice candidate genes onto the maize genome using a synteny conservation approach based on comparative mapping between the maize genetic map and japonica rice physical map. This yielded 19 associations between maize QTL and genes involved in flowering time in rice and in Arabidopsis. Results suggest that the combination of meta-analysis within a species of interest and synteny-based projections from a related model plant can be an efficient strategy for identifying new candidate genes for trait variation.  相似文献   

3.
Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness‐related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome‐wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset.  相似文献   

4.
Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi‐ genetic background population that contained more than 8000 lines under multiple Sino‐United States environments. The population included two nested association mapping (NAM) panels and a natural association panel. Nearly 1 million single‐nucleotide polymorphisms (SNPs) were used in the analyses. Through the parallel linkage analysis of the two NAM panels, both common and unique flowering time regions were detected. Genome wide, a total of 90 flowering time regions were identified. One‐third of these regions were connected to traits associated with the environmental sensitivity of maize flowering time. The genome‐wide association study of the three panels identified nearly 1000 flowering time‐associated SNPs, mainly distributed around 220 candidate genes (within a distance of 1 Mb). Interestingly, two types of regions were significantly enriched for these associated SNPs – one was the candidate gene regions and the other was the approximately 5 kb regions away from the candidate genes. Moreover, the associated SNPs exhibited high accuracy for predicting flowering time.  相似文献   

5.
Drought is a serious agronomic problem, and one of the most important factors contributing to crop yield loss. In maize grown in temperate areas, drought stress occurs just before and during the flowering period; consequently, tolerance to water stress in this species is largely determined by events that occur at or shortly after flowering. The purposes of our investigation were: (1)?to identify the chromosomal regions where factors conferring drought tolerance for traits related to plant development and flowering are located and (2)?to compare these regions with those carrying QTLs controlling these traits, in order to get indirect information on the genetic and physiological basis of maize response to water stress. To this aim, we performed a linkage analysis between the expression of male and female flowering time, anthesis-silking interval (ASI), plant height and molecular markers. The experiment was carried out under two environmental conditions, well-watered and water-stressed, on a maize population of 142 recombinant inbred lines obtained by selfing the F1 between lines B73 and H99 and genotyped by RFLP, microsatellites (SSR) and AFLP markers, for a total of 153 loci. Linkage analysis revealed that, for male flowering time and plant height, most of the QTLs detected were the same under control and stress conditions. In contrast, with respect to female flowering time and ASI diverse QTLs appeared to be expressed either under control conditions or under stress. All of the QTLs conferring tolerance to drought were located in a different chromosome position as compared to the map position of the factors controlling the trait per se. This suggests that plant tolerance, in its different components, is not attributable to the presence of favourable allelic combinations controlling the trait but is based on physiological characteristics not directly associated with the control of the character.  相似文献   

6.
How to be early flowering: an evolutionary perspective   总被引:3,自引:0,他引:3  
In wild and cultivated annual plant species, flowering time is an important life-history trait that coordinates the life cycle with local environmental conditions. Extensive studies on the genetic basis of flowering time in the model species Arabidopsis thaliana have revealed a complex genetic network that can detect environmental and internal signals. Based on this knowledge and on known pleiotropic effects associated with flowering time genes, we suggest that a natural shift towards an early-flowering life cycle might involve only particular functional regions in a limited number of genes. Our predictions are supported by genetic theories of adaptation and by recent data about genes associated with natural variation. We analyse the extent to which these predictions can also apply to crop species.  相似文献   

7.
Detection of QTL for flowering time in multiple families of elite maize   总被引:1,自引:0,他引:1  
Flowering time is a fundamental quantitative trait in maize that has played a key role in the postdomestication process and the adaptation to a wide range of climatic conditions. Flowering time has been intensively studied and recent QTL mapping results based on diverse founders suggest that the genetic architecture underlying this trait is mainly based on numerous small-effect QTL. Here, we used a population of 684 progenies from five connected families to investigate the genetic architecture of flowering time in elite maize. We used a joint analysis and identified nine main effect QTL explaining approximately 50?% of the genotypic variation of the trait. The QTL effects were small compared with the observed phenotypic variation and showed strong differences between families. We detected no epistasis with the genetic background but four digenic epistatic interactions in a full 2-dimensional genome scan. Our results suggest that flowering time in elite maize is mainly controlled by main effect QTL with rather small effects but that epistasis may also contribute to the genetic architecture of the trait.  相似文献   

8.
Convergent phenotypic evolution provides some of the strongest evidence for adaptation. However, the extent to which recurrent phenotypic adaptation has arisen via parallelism at the molecular level remains unresolved, as does the evolutionary origin of alleles underlying such adaptation. Here, we investigate genetic mechanisms of convergent highland adaptation in maize landrace populations and evaluate the genetic sources of recurrently selected alleles. Population branch excess statistics reveal substantial evidence of parallel adaptation at the level of individual single-nucleotide polymorphism (SNPs), genes, and pathways in four independent highland maize populations. The majority of convergently selected SNPs originated via migration from a single population, most likely in the Mesoamerican highlands, while standing variation introduced by ancient gene flow was also a contributor. Polygenic adaptation analyses of quantitative traits reveal that alleles affecting flowering time are significantly associated with elevation, indicating the flowering time pathway was targeted by highland adaptation. In addition, repeatedly selected genes were significantly enriched in the flowering time pathway, indicating their significance in adapting to highland conditions. Overall, our study system represents a promising model to study convergent evolution in plants with potential applications to crop adaptation across environmental gradients.  相似文献   

9.
10.
During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock’s molecular functioning can facilitate molecular breeding in the future.

Crop genes that have been implicated in the modulation of photoperiodic flowering time and adaptation include orthologs of Arabidopsis core clock genes.  相似文献   

11.
Photoperiodic flowering is one of the most important factors affecting regional adaptation and yield in soybean (Glycine max). Plant adaptation to long-day conditions at higher latitudes requires early flowering and a reduction or loss of photoperiod sensitivity; adaptation to short-day conditions at lower latitudes involves delayed flowering, which prolongs vegetative growth for maximum yield potential. Due to the influence of numerous major loci and quantitative trait loci (QTLs), soybean has broad adaptability across latitudes. Forward genetic approaches have uncovered the molecular basis for several of these major maturity genes and QTLs. Moreover, the molecular characterization of orthologs of Arabidopsis thaliana flowering genes has enriched our understanding of the photoperiodic flowering pathway in soybean. Building on early insights into the importance of the photoreceptor phytochrome A, several circadian clock components have been integrated into the genetic network controlling flowering in soybean: E1, a repressor of FLOWERING LOCUS T orthologs, plays a central role in this network. Here, we provide an overview of recent progress in elucidating photoperiodic flowering in soybean, how it contributes to our fundamental understanding of flowering time control, and how this information could be used for molecular design and breeding of high-yielding soybean cultivars.  相似文献   

12.

Background

Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation.

Results

We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time.

Conclusions

Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.  相似文献   

13.
14.
The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT) gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD) estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide range of environments.  相似文献   

15.
Bomblies K  Doebley JF 《Genetics》2006,172(1):519-531
Phenotypic variation on which selection can act during evolution may be caused by variation in activity level of developmental regulatory genes. In many cases, however, such genes affect multiple traits. This situation can lead to co-evolution of traits, or evolutionary constraint if some pleiotropic effects are detrimental. Here, we present an analysis of quantitative traits associated with gene copy number of two important maize regulatory genes, the duplicate FLORICAULA/LEAFY orthologs zfl1 and zfl2. We found statistically significant associations between several quantitative traits and copy number of both zfl genes in several maize genetic backgrounds. Despite overlap in traits associated with these duplicate genes, zfl1 showed stronger associations with flowering time, while zfl2 associated more strongly with branching and inflorescence structure traits, suggesting some divergence of function. Since zfl2 associates with quantitative variation for ear rank and also maps near a quantitative trait locus (QTL) on chromosome 2 controlling ear rank differences between maize and teosinte, we tested whether zfl2 might have been involved in the evolution of this trait using a QTL complementation test. The results suggest that zfl2 activity is important for the QTL effect, supporting zfl2 as a candidate gene for a role in morphological evolution of maize.  相似文献   

16.

Key message

This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids.

Abstract

Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.
  相似文献   

17.
An association study conducted on 375 maize inbred lines indicates a strong relationship between Vgt1 polymorphisms and flowering time, extending former quantitative trait loci (QTL) mapping results. Analysis of allele frequencies in a landrace collection supports a key role of Vgt1 in maize altilatitudinal adaptation.  相似文献   

18.
Many genes encoding CCT domain‐containing proteins regulate flowering time. In rice (Oryza sativa), 41 such genes have been identified, but only a few have been shown to regulate heading date. Here, to test whether and how additional CCT family genes regulate heading date in rice, we classified these genes into five groups based on their diurnal expression patterns. The expression patterns of genes in the same subfamily or in close phylogenetic clades tended to be similar. We generated knockout mutants of the entire gene family via CRISPR/Cas9. The heading dates of knockout mutants of only 4 of 14 genes previously shown to regulate heading date were altered, pointing to functional redundancy of CCT family genes in regulating this trait. Analysis of mutants of four other genes showed that OsCCT22, OsCCT38, and OsCCT41 suppress heading under long‐day conditions and promote heading under short‐day conditions. OsCCT03 promotes heading under both conditions and upregulates the expression of Hd1 and Ehd1, a phenomenon not previously reported for other such genes. To date, at least 18 CCT domain‐containing genes involved in regulating heading have been identified, providing diverse, flexible gene combinations for generating rice varieties with a given heading date.  相似文献   

19.
The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号