首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The environmental impacts of data centers that provide information and communication technologies (ICTs) services are strongly related to electricity generation. With the increasing use of ICT, many data centers are expected to be built, causing more absolute impacts on the environment. Given that electricity distribution networks are very complex and dynamic systems, an environmental evaluation of future data centers is uncertain. This study proposes a new approach to investigate the consequences of future data center deployment in Canada and optimize this deployment based on the Energy 2020 technoeconomic model in combination with life cycle assessment methodology. The method determines specific electricity sources that will power the future Canadian data centers and computes related environmental impacts based on several indicators. In case‐study scenarios, the largest deployment of data centers leads to the smallest impact per megawatt of data centers for all of the environmental indicators. It is found that an increase in power demand by data centers would lead to a reduction in electricity exports to the United States, driving the United States to generate more electricity to meet its energy demand. Given that electricity generation in the United States is more polluting than in Canada, the deployment of data centers in Canada is indirectly linked to an increase in overall environmental impacts. However, though an optimal solution should be found to mitigate global greenhouse gas emissions, it is not clear whether the environmental burden related to U.S. electricity generation should be attributed to the Canadian data centers.  相似文献   

2.
The direct energy demand of Internet data flows can be assessed using a variety of methodological approaches (top‐down, bottom‐up, or hybrid/model based) and different definitions of system boundaries. Because of this diversity, results reported in the literature differ by up to two orders of magnitude and are difficult to compare. We present a first assessment that uses a pure bottom‐up approach and a system boundary that includes only transmission equipment. The assessment is based on the case study of a 40 megabit per second videoconferencing transmission between Switzerland and Japan, yielding a consumption of 0.2 kilowatt‐hours per transmitted gigabyte for 2009, a result that supports the lowest of the existing estimates. We discuss the practical implications of our findings.  相似文献   

3.
Applications of information and communications technology (ICT) for the management of environmental data, if used during the design and at the end of the product life cycle, can improve the environmental performance of products. This specific application of ICT for data management is called product data technology (PDT) and is based on the use of international standards developed by ISO TC184/SC4. PDT enables the computerized representations of information about products, processes, and their properties that are independent of any proprietary computer system or software application. The standard product data models are designed to integrate the necessary information about materials used in the product, and such information can be accessed and used at any point in the life cycle, from design to disposal. In the article, we present how PDT can support life cycle assessment (LCA) by focusing on a series of standards for communicating data for design and manufacture and standards for business and commercial information. Examples of possibilities for using PDT and semantic web for LCA data are introduced. The findings presented here are based on DEPUIS (Design of Environmentally‐Friendly Products Using Information Standards), a project aimed at improving the eco‐design of new products and services through the innovative use of new information standards.  相似文献   

4.
The use of information and communication technology (ICT) is growing throughout society, and new products and solutions are developed at an increasing rate. To enable environmental assessment of specific ICT products and other products that rely on ICT in some way, a more complete, detailed, and up‐to‐date study based on real measurements is needed. To date, similar studies have not been readily available or fully comprehensive. This study assessed the overall operational electricity use and life‐cycle–based carbon footprint (CF) relating to ICT in Sweden, including activities not commonly addressed previously, such as shared data transport networks and data centers and manufacturing of network infrastructure. Specific, detailed inventory data are presented and used for assessment of the Internet Protocol core network, data transmission, operator activities, and access network. These specific data, in combination with secondary, more generic data for end‐user equipment, allow a comprehensive overall assessment. The majority of the ICT network CF is the result of end‐user equipment, mainly personal computers, followed by third‐party enterprise networks and data centers and then access networks. The parts closest to the user proved to be clearly responsible for the majority of the impact. The results are presented for Swedish ICT networks and for ICT networks in general based on a global average electricity mix.  相似文献   

5.
In this study, we use an improved, more accurate model to analyze the energy footprint of content downloaded from a major online newspaper by means of various combinations of user devices and access networks. Our results indicate that previous analyses based on average figures for laptops or desktop personal computers predict national and global energy consumption values that are unrealistically high. Additionally, we identify the components that contribute most of the total energy consumption during the use stage of the life cycle of digital services. We find that, depending on the type of user device and access network employed, the data center where the news content originates consumes between 4% and 48% of the total energy consumption when news articles are read and between 2% and 11% when video content is viewed. Similarly, we find that user devices consume between 7% and 90% and 0.7% and 78% for articles and video content, respectively, depending on the type of user device and access network that is employed. Though increasing awareness of the energy consumption by data centers is justified, an analysis of our results shows that for individual users of the online newspaper we studied, energy use by user devices and the third‐generation (3G) mobile network are usually bigger contributors to the service footprint than the datacenters. Analysis of our results also shows that data transfer of video content has a significant energy use on the 3G mobile network, but less so elsewhere. Hence, a strategy of reducing the resolution of video would reduce the energy footprint for individual users who are using mobile devices to access content by the 3G network.  相似文献   

6.
Information and communication technology (ICT) is providing new ways to access media content. ICT has environmental benefits and burdens. The overall goal of the present study was to assess the environmental impacts of production and consumption of magazines read on tablets from a life cycle perspective. Important goals were to identify the activities giving rise to the main impacts and the key factors influencing the overall environmental impacts. Data gaps and uncertainties were also addressed. The results are compared against those for the print edition of the magazine in a separate article (part 2). The methodology used in the study was life cycle assessment. The environmental impacts assessed included climate change, cumulative energy/exergy demand, metal depletion, photochemical oxidant formation, particulate matter formation, terrestrial acidification, freshwater/marine eutrophication, fossil depletion, human toxicity, and ecotoxicity. The results indicate that content production can be the major contributor to environmental impacts if readers are few (as for the emerging version of the magazine studied). Assuming more readers (more mature version) or a larger file size for the tablet magazine, electronic storage and distribution may be the major contributor. Thus, in contrast to previous studies on electronic media, which reported a dominant impact of the use phase, this study found a higher impact for content production (emerging version) and electronic storage and distribution (mature version). However, with inefficient, low overall use of the tablet with a mature version of the tablet magazine, the greatest impact was shown to come from the reading activity (i.e., the use phase). In conclusion, the relative impacts of the tablet magazine would decrease considerably with high numbers of readers, their efficient use of the tablet (i.e., for many purposes over a long life of the device), and a smaller magazine file.  相似文献   

7.
This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from natural gas‐fired combustion turbine (NGCT) and combined‐cycle (NGCC) systems. The smaller set of LCAs of liquefied natural gas power systems and natural gas plants with carbon capture and storage were also collected, but analyzed to a lesser extent. A meta‐analytical process we term “harmonization” was employed to align several system boundaries and technical performance parameters to better allow for cross‐study comparisons, with the aim of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. Of over 250 references identified, 42 passed screens for technological relevance and study quality, providing a total of 69 estimates for NGCT and NGCC. Harmonization increased the median estimates in each category as a result of several factors not typically considered in the previous research, including the regular clearing of liquids from a well, and consolidated the interquartile range for NGCC to 420 to 480 grams of carbon dioxide equivalent per kilowatt‐hour (g CO2‐eq/kWh) and for NGCT to 570 to 750 g CO2‐eq/kWh, with medians of 450 and 670 CO2‐eq/kWh, respectively. Harmonization of thermal efficiency had the largest effect in reducing variability; methane leakage rate is likely similarly influential, but was unharmonized in this assessment as a result of the significant current uncertainties in its estimation, an area that is justifiably receiving significant research attention.  相似文献   

8.
The rapid development of information and communications technology (ICT) is providing new ways to access media content. Electronic media are sometimes more advantageous from an environmental perspective than paper‐based media solutions, but ICT‐based media can also bring environmental burdens. This study compared the potential environmental impacts in a life cycle perspective of a print edition of a magazine and that of its electronic edition read on a tablet device. Important objectives were to identify activities giving rise to the main environmental impacts for both the print and tablet editions, determine the key factors influencing these impacts, and address data gaps and uncertainties. A detailed assessment of the tablet edition is provided in a previous article (part 1), whereas this article compares it with the print edition. The methodology used was life cycle assessment and the environmental impacts assessed included climate change, cumulative energy/exergy demand, metal depletion, photochemical oxidant formation, particulate matter formation, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Use of different functional units to compare the print and tablet editions of the magazine resulted in different relative environmental impacts. In addition, emerging (low number of readers and low reading time per copy) and mature (higher number of readers and higher reading time per copy) tablet editions yielded varying results. The emerging tablet edition resulted in higher potential environmental impacts per reader than the print edition, but the mature tablet edition yielded lower impacts per reader in half the impact categories assessed. This illustrates the importance of spreading the environmental impacts over a large number of readers. The electricity mix used in product system processes did not greatly affect the results of tablet/print comparisons, but overall number of readers for the tablet edition, number of readers per copy for the print edition, file size, and degree of use of the tablet device proved crucial for the comparison results.  相似文献   

9.
This article describes research conducted for the Japanese government in the wake of the magnitude 9.0 earthquake and tsunami that struck eastern Japan on March 11, 2011. In this study, material stock analysis (MSA) is used to examine the losses of building and infrastructure materials after this disaster. Estimates of the magnitude of material stock that has lost its social function as a result of a disaster can indicate the quantities required for reconstruction, help garner a better understanding of the volumes of waste flows generated by that disaster, and also help in the course of policy deliberations in the recovery of disaster‐stricken areas. Calculations of the lost building and road materials in the five prefectures most affected were undertaken. Analysis in this study is based on the use of geographical information systems (GIS) databases and statistics; it aims to (1) describe in spatial terms what construction materials were lost, (2) estimate the amount of infrastructure material needed to rehabilitate disaster areas, and (3) indicate the amount of lost material stock that should be taken into consideration during government policy deliberations. Our analysis concludes that the material stock losses of buildings and road infrastructure are 31.8  and 2.1 million tonnes, respectively. This research approach and the use of spatial MSA can be useful for urban planners and may also convey more appropriate information about disposal based on the work of municipalities in disaster‐afflicted areas.  相似文献   

10.
Beyond Energy     
This article is based on the first study worldwide to analyze materials present in the equipment of data centers. The study develops a methodology that allows the calculation of the number of data centers of the various size classes and their average equipment with information technology (IT) components and infrastructure elements, such as air‐conditioning systems and power supplies. This enables detailed statements to be made on the materials present in the equipment of approximately 53,000 data centers in Germany. In 2008, the total amount of materials in the equipment of data centers in Germany was 110,300 tonnes (t). IT equipment (servers, storage equipment, and network) accounted for 37,500 t (34%), racks and containments for 30,700 t (28%), cooling and air‐conditioning systems for 12,000 t (11%), and the power infrastructure for 30,000 t (27%). A comprehensive analysis of the type of materials being used yielded the following values: Approximately 58,400 t of iron, 18,600 t of copper, 11,600 t of circuit boards, 11,100 t of plastics, 7,400 t of aluminum, and 6,500 t of miscellaneous materials were present in German data centers. The electronic material contained 1.8 t of gold, 7.5 t of silver, and 0.8 t of palladium. Because it can be assumed that prices for precious metals, and also for bulk metals, will continue to rise, the recovery of raw materials from the IT devices of data centers is an interesting option. Additionally, the development of appropriate product design and recycling strategies for servers and storage units should be implemented.  相似文献   

11.
Stationary batteries are projected to play a role in the electricity system of Switzerland after 2030. By enabling the integration of surplus production from intermittent renewables, energy storage units displace electricity production from different sources and potentially create environmental benefits. Nevertheless, batteries can also cause substantial environmental impacts during their manufacturing process and through the extraction of raw materials. A prospective consequential life cycle assessment (LCA) of lithium metal polymer and lithium‐ion stationary batteries is undertaken to quantify potential environmental benefits and drawbacks. Projections are integrated into the LCA model: Energy scenarios are used to obtain marginal electricity supply mixes, and projections about the battery performances and the recycling process are sourced from the literature. The roles of key parameters and methodological choices in the results are systematically investigated. The results demonstrate that the displacement of marginal electricity sources determines the environmental implications of using batteries. In the reference scenario representing current policy, the displaced electricity mix is dominated by natural gas combined cycle units. In this scenario, the use of batteries generates environmental benefits in 12 of the 16 impact categories assessed. Nevertheless, there is a significant reduction in achievable environmental benefits when batteries are integrated into the power supply system in a low‐carbon scenario because the marginal electricity production, displaced using batteries, already has a reduced environmental impact. The direct impacts of batteries mainly originate from upstream manufacturing processes, which consume electricity and mining activities related to the extraction of materials such as copper and bauxite.  相似文献   

12.
Advances in digital technology and the growth of information networks are revolutionizing human activity. The Internet has been championed as a new tool for environmental improvement. A life-cycle energy analysis of digital libraries, a growing application of information technology, was conducted to test this premise.
Life-cycle models were compared for journal collections in digital and traditional formats. The basis for analysis was the amount of information in a typical scientific journal article (∼12 pages), which is equivalent to 0.97 hr of on-screen reading time. Digital system elements such as servers, routers, laser printers, and computer workstations were modeled. Journal production, delivery, storage, binding, interlibrary loan, and photocopying were examined for the traditional system. Building-related infrastructure, office paper, and personal transportation of the library patron were analyzed for both cases. In all, the study incorporated nearly 30 model elements, 90 input variables, and numerous fixed parameters.
Five primary scenarios were constructed to consider increasing levels of complexity. Scenario 1 assumes only one reading per article (unit of analysis). Additional scenarios assume 1,000 readings and vary the following: laser printing, photocopying, and personal transportation. Energy consumed by the digital collection ranged between 4.10 and 216 MJ. The traditional system realized burdens from 0.55 to 525 MJ. Four significant effects were uncovered: (1) Energy consumption per unit was highly influenced by the number of readings per article. (2) Networking infrastructure by itself had a relatively small effect on total energy consumed by the digital system. (3) When personal transportation was considered, its effects tended to dominate. (4) The impact of making personal copies varied. Photocopying always increased energy consumption, whereas laser printing actually saved energy when it substituted for on-screen reading.  相似文献   

13.
This study explored the impacts of electricity allocation protocols on the life cycle greenhouse gas (GHG) emissions of electricity consumption. The selection of appropriate electricity allocation protocols, methodologies that assign pools of electricity generators to electricity consumers, has not been well standardized. This can lead to very different environmental profiles of similar, electricity‐intensive processes. In an effort to better represent the interconnected nature of the U.S. electrical grid, we propose two new protocols that utilize inter‐regional trade information and localized emission factors to combine generating pools that are sub‐ or supersets of one another. This new nested approach increases the likelihood of capturing important inter‐regional electricity trading and the appropriate assignment of generator emissions to consumers of local and regional electricity. We applied the new and existing protocols to the U.S. primary aluminum industry, an industry whose environmental impact is heavily tied to its electricity consumption. Our analysis found GHG emission factors that were dramatically different than those reported in previous literature. We calculated production‐weighted average emission factors of 19.0 and 19.9 kilograms carbon dioxide equivalent per kilogram of primary aluminum ingot produced when using our two nested electricity allocation protocols. Previous studies reported values of 10.5 and 11.0, at least 42% lower than those found by our study.  相似文献   

14.
The environmental impact associated with reading an on-line and a printed newspaper is analyzed and compared with respective parts of a television (TV) broadcast. Two reference units were chosen for comparison to account for differences between media in presentation and consumption (reading or watching a news item) and consumption of the daily news as a whole. The environmental impact is assessed using life-cycle assessment (LCA).
Key drivers of the environmental impact for both electronic delivery systems are energy consumption and power generation. Not only do the manufacturing of the products and their use have an environmental impact, but so does the use of the necessary infrastructure, that is, energy consumption of the telephone network or data transfer via Internet. Printing of on-line information also turned out to be important.
In the case of the printed newspapers, energy consumption is again important, here for the manufacturing of pulp and paper. Complete printed newspapers (the form in which they are typically purchased) have a very high environmental burden relative to watching the TV news or reading on-line news, even if the propensity to extend TV viewing is taken into consideration.  相似文献   

15.
A significant debate has emerged with respect to the energy requirements of the Internet. The popular literature has echoed a misleading study that incorrectly suggests the growth of the information economy will require huge amounts of new energy resources. Even correcting the misleading assumptions in that study, discussion on this topic tends to result in a highly limited and unsatisfactory review of many larger issues. Although the evidence suggests a relatively small amount of energy is required to power today's information needs—;about 3% of total electricity consumption in the United States—;the complexity and connectivity of the Internet, and, more generally, the information economy, yield a deep uncertainty about the eventual long-term impact on energy consumption. Although we may not yet be able to generalize about the future long-term energy needs associated with the information economy, the evidence points to continuing technical changes and the growing substitution of knowledge for material resources. These interrelated trends will likely generate small decreases in energy intensity and reduce subsequent environmental impacts relative to many baseline projections. Despite these trends, a number of questions need to be addressed before any solid long-term conclusions might be forthcoming. The article reviews some of the dimensions of these possible changes and suggests further directions for research that may help answer these important questions.  相似文献   

16.
In pursuit of more sustainable development of industry, China has been actively developing eco‐industrial parks (EIPs) for more than a decade. However, the environmental value of these EIPs remains largely unverified. This study aimed to evaluate the environmental performance of national EIPs in China using data envelopment analysis. Eco‐efficiency and environmental performance indices were used to represent the static and dynamic environmental performance of EIPs, respectively. An environmental performance index was formed by combining measures of eco‐efficiency in a dynamic setting with the sequential Malmquist index approach. We obtained three main empirical findings. First, 34 national EIPs exhibited a cumulative environmental performance improvement of 89.4% from 2007 to 2010, which is primarily the result of eco‐efficiency change rather than environmental technical change. Second, compared with the trial EIPs, the demonstration EIPs had a higher average eco‐efficiency (0.611 vs. 0.446 in 2010) and experienced greater average environmental performance improvement (129% vs. 60%). Third, the EIPs retrofitted from high‐tech industrial development zones exhibited much higher average eco‐efficiency (0.798 vs. 0.440 in 2010) than those retrofitted from economic and technical development zones. The key measures supporting the performance improvement and policy implications for the development of EIPs are also discussed.  相似文献   

17.
Although the existing body of empirical literature on the relation between corporate environmental performance (CEP) and corporate financial performance (CFP) is continuously growing, results are still inconclusive about this fundamental question in industrial ecology. Comparisons are difficult because of various estimation methods as well as the overall heterogeneous and complex interaction between the two constructs, but especially because of country‐specific data sets. Consequently, we raise the question of whether regional differences are the driving force buried underneath the inconclusiveness. Therefore, the aim of this article is to explore this heterogeneity by aggregating 893 existing results from 142 empirical primary studies that are based on more than 750,000 firm‐year observations. Our findings suggest a convex impact of a country's economic development on the magnitude of the CEP‐CFP effect (i.e., the effect is positive in developing countries, disappears in emerging countries, and is again positive in highly developed countries). We also find that the overall positive relation strengthens for market‐based CFP measures and diminishes for countries with civil law systems, firms from the service sector, reactive environmental activities, and process‐based CEP measures. Further, several aspects of the examined data sample and the inclusion of relevant control variables explain heterogeneity in previous research results.  相似文献   

18.
Increased demand for water and energy and growing recognition of environmental issues motivate awareness of how these resources are used in industry. Industrial tomato processing consumes substantial quantities of both water and energy. To understand how these resources are used in tomato processing and what opportunities exist for improving efficiency, a water energy nexus (WEN) assessment was conducted that accounted for the various ways energy becomes embedded in water during processing by motors, pumps, fans, and boilers. The WEN assessment was conducted at an industrial tomato processing facility that processed 265 metric tonnes of fruit per hour to develop a map of water and associated energy use at each processing step. A total of 1.29 billion kilograms (kg) of water were used for the processing season, with 870 million kg routed to flumes. The analysis identified the thermal energy used to generate steam for the various heat exchangers and evaporators used during processing as the greatest source of embedded energy in process water (778,000 gigajoules per season). The electrical energy embedded in the process water totaled 4.4 million kilowatt‐hours per season, over 80% of which was attributed to pumping. Moreover, the data were used to identify opportunities to improve efficiency by adjusting water loads on equipment and developing strategies for water and energy conservation and recovery. The baseline water and energy use data provided by the WEN assessment can enable additional modeling to assess resource efficiency measures and the life cycle impact of processed tomato products.  相似文献   

19.
Economic input‐output life cycle assessment (IO‐LCA) models allow for quick estimation of economy‐wide greenhouse gas (GHG) emissions associated with goods and services. IO‐LCA models are usually built using economic accounts and differ from most process‐based models in their use of economic transactions, rather than physical flows, as the drivers of supply‐chain GHG emissions. GHG emissions estimates associated with input supply chains are influenced by the price paid by consumers when the relative prices between individual consumers are different. We investigate the significance of the allocation of GHG emissions based on monetary versus physical units by carrying out a case study of the U.S. electricity sector. We create parallel monetary and mixed‐unit IO‐LCA models using the 2007 Benchmark Accounts of the U.S. economy and sector specific prices for different end users of electricity. This approach is well suited for electricity generation because electricity consumption contributes a significant share of emissions for most processes, and the range of prices paid by electricity consumers allows us to explore the effects of price on allocation of emissions. We find that, in general, monetary input‐output models assign fewer emissions per kilowatt to electricity used by industrial sectors than to electricity used by households and service sectors, attributable to the relatively higher prices paid by households and service sectors. This fact introduces a challenging question of what is the best basis for allocating the emissions from electricity generation given the different uses of electricity by consumers and the wide variability of electricity pricing.  相似文献   

20.
The focus of urban water system metabolism studies has, by and large, been restricted to what comes under the domain of the urban water utilities: water treatment and supply, and wastewater collection, treatment, and disposal. The material and energy flows both necessitated and facilitated by the supply of treated water to households—the water demand subsystem—are by no means negligible. This article studies the key flows into households associated with water consumption and the environmental impacts related to the same for India as a whole. Electricity consumption in washing machines and water heaters contributes the most to almost all the 13 environmental impact categories considered. This is easily explained by the fossil fuel heaviness of the Indian mix (>60%). Soaps contribute the most to terrestrial eco‐toxicity and malodorous air. In India, on a national scale, all the environmental impact categories deserve attention. The absolute consumption of electricity, soaps, and detergents, and the demand for home appliances will increase in the years to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号