首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Economic impact of biofouling on a naval surface ship   总被引:3,自引:0,他引:3  
In the present study, the overall economic impact of hull fouling on a mid-sized naval surface ship (Arleigh Burke-class destroyer DDG-51) has been analyzed. A range of costs associated with hull fouling was examined, including expenditures for fuel, hull coatings, hull coating application and removal, and hull cleaning. The results indicate that the primary cost associated with fouling is due to increased fuel consumption attributable to increased frictional drag. The costs related to hull cleaning and painting are much lower than the fuel costs. The overall cost associated with hull fouling for the Navy's present coating, cleaning, and fouling level is estimated to be $56M per year for the entire DDG-51 class or $1B over 15 years. The results of this study provide guidance as to the amount of money that can be reasonably spent for research, development, acquisition, and implementation of new technologies or management strategies to combat hull fouling.  相似文献   

2.
Recent book     
In the present study, the overall economic impact of hull fouling on a mid-sized naval surface ship (Arleigh Burke-class destroyer DDG-51) has been analyzed. A range of costs associated with hull fouling was examined, including expenditures for fuel, hull coatings, hull coating application and removal, and hull cleaning. The results indicate that the primary cost associated with fouling is due to increased fuel consumption attributable to increased frictional drag. The costs related to hull cleaning and painting are much lower than the fuel costs. The overall cost associated with hull fouling for the Navy's present coating, cleaning, and fouling level is estimated to be $56M per year for the entire DDG-51 class or $1B over 15 years. The results of this study provide guidance as to the amount of money that can be reasonably spent for research, development, acquisition, and implementation of new technologies or management strategies to combat hull fouling.  相似文献   

3.
In-water ships’ hull cleaning enables significant fuel savings through removal of marine fouling from surfaces. However, cleaning may also shorten the lifetime of hull coatings, with a subsequent increase in the colonization and growth rate of fouling organisms. Deleterious effects of cleaning would be minimized by matching cleaning forces to the adhesion strength of the early stages of fouling, or microfouling. Calibrated waterjets are routinely used to compare different coatings in terms of the adhesion strength of microfouling. However, an absolute scale is lacking for translating such results into cleaning forces, which are of interest for the design and operation of hull cleaning devices. This paper discusses how such forces can be determined using computational fluid dynamics. Semi-empirical formulae are derived for forces under immersed waterjets, where the normal and tangential components of wall forces are given as functions of different flow parameters. Nozzle translation speed is identified as a parameter for future research, as this may affect cleaning efficacy.  相似文献   

4.
Abstract

Today, ship hull fouling is managed through fouling-control coatings, complemented with in-water cleaning. During cleaning, coating damage and wear must be avoided, for maximum coating lifetime and reduced antifoulant release. When possible, cleaning should target early stages of fouling, using minimal forces. However, such forces, and their effects on coatings, have not yet been fully quantified. In this one-year study, minimal cleaning forces were determined using a newly-designed immersed waterjet. The results show that bi-monthly/monthly cleaning, with maximum wall shear stress up to ~1.3?kPa and jet stagnation pressure ~0.17?MPa, did not appear to cause damage or wear on either the biocidal antifouling (AF) or the biocide-free foul-release (FR) coatings. The AF coating required bi-monthly cleanings to keep fouling to incipient slime (time-averaged results), while the FR coating had a similar fouling level even without cleaning. The reported forces may be used in matching cleaning parameters to the adhesion strength of the early stages of fouling.  相似文献   

5.
Aim Recreational boating is arguably the largest unregulated vector for the introduction and spread of marine invasive species. Hull fouling communities have been recognized to harbour non‐indigenous species (NIS), but presence should not be equated with transport. In this study, we characterize the presence of NIS in hull fouling communities, determine if host vessels transport these species and evaluate the importance of recreational boating as a vector for introduction and spread. Location Coastal British Columbia (BC), Canada. Methods Dive surveys in BC marinas were conducted to record the presence of NIS and to estimate their per cent cover. In addition, a boater questionnaire survey was used to determine common travel and maintenance practices. These results were combined to investigate the potential for recreational boats to transport NIS. Results Nine NIS, including the highly invasive ascidians Styela clava and Botrylloides violaceus, and the macroalga Sargassum muticum, were found in hull fouling communities on recreational boats. Overall, per cent cover was generally low; however, niche areas were commonly fouled, even on active and otherwise clean boats. Fouling of niche areas was not related to either antifouling paint age or travel frequency, and fouling levels were highly variable among individual boats both within marinas and across regions. Main conclusions Recreational boating is a major vector contributing to the spread of marine invasive species. Our results indicate that recreational boats represent a high‐risk vector both for primary introduction and secondary spread of marine NIS and should be subject to vector management regulations.  相似文献   

6.
Measures taken to control the spread of non-indigenous species by human vectors may act selectively by providing effective protection against some (but not all) species. Toxic antifouling paints are used by boat owners to prevent the development of fouling assemblages on the hulls of their boats, which reduce vessel speed and maneuverability. By reducing fouling, these paints also prevent transport of non-indigenous species. Using experimental surfaces mimicking boat hulls, we evaluated the effectiveness and selectivity of (1) antifouling paints, and (2) manual, in-water hull cleaning for preventing the transport of marine sessile invertebrates by recreational vessels. Different types of antifouling paints provided effective protection only against barnacles and bivalves. Other fouling taxa occurred on experimental surfaces after a period of only 2 months. Manual hull cleaning did not remove fouling completely, and even enhanced the risk of subsequent recruitment by some fouling organisms. Up to six times more individuals and colonies recruited to boat surfaces from which the existing fouling organisms had been removed manually than to surfaces that had been sterilized or contained intact fouling assemblages. Bivalves, colonial and solitary ascidians, encrusting bryozoans, hydroids, tubiculous polychaetes, and sponges consistently recruited in greatest abundance to manually cleaned surfaces. Individual taxa responded in complex, but predictable ways to the biogenic cues left by manual cleaning, so that different suites of organisms colonized surfaces that had originally contained fouling assemblages of local or non-local origin. Our study shows that widely adopted measures to control the spread of non-indigenous species by human vectors are often highly selective and, while effective for some taxa, do not prevent the transport of others.  相似文献   

7.
Long-term grooming tests were conducted on two large-scale test panels, one coated with a fluorosilicone fouling-release (FR) coating, and one coated with a copper based ablative antifouling (AF) coating. Mechanical grooming was performed weekly or bi-weekly using a hand operated, electrically powered, rotating brush tool. The results indicate that weekly grooming was effective at removing loose or heavy biofilm settlement from both coatings, but could not prevent the permanent establishment of low-profile tenacious biofilms. Weekly grooming was very effective at preventing macrofouling establishment on the AF coating. The effectiveness of weekly grooming at preventing macrofouling establishment on the FR coating varied seasonally. The results suggest that frequent mechanical grooming is a viable method to reduce the fouling rating of ships’ hulls with minimal impact to the coating. Frequent grooming could offer significant fuel savings while reducing hull cleaning frequencies and dry dock maintenance requirements.  相似文献   

8.
Vessel traffic is the primary pathway for non-indigenous marine species introductions to New Zealand, with hull fouling recognised as being an important mechanism. This article describes hull fouling on seven slow-moving commercial vessels sampled over a 1 year period. Sampling involved the collection of images and fouling specimens from different hull locations using a standardised protocol developed to assess vessel biofouling in New Zealand. A total of 29 taxa was identified by expert taxonomists, of which 24% were indigenous to New Zealand and 17% non-indigenous. No first records to New Zealand were reported, however 59% of species were classified as ‘unknown’ due to insufficient taxonomic resolution. The extent of fouling was low compared to that described for other slow-movers. Fouling cover, biomass and richness were on average 17.1% (SE = 1.8%), 5.2 g (SE = 1.1 g) and 0.8 (SE = 0.07) per photoquadrat (200 × 200 mm), respectively. The fouling extent was lowest on the main hull areas where the antifouling paint was in good condition. In contrast, highest levels of fouling were associated with dry-docking support strips and other niche areas of the hull where the paint condition was poor. Future studies should target vessels from a broader range of bioregions, including vessels that remain idle for extended periods (ie months) between voyages, to increase understanding of the biosecurity risks posed by international commercial slow-movers.  相似文献   

9.
Ji-Soo Park 《Biofouling》2018,34(1):98-110
An ultrasonic antifouling treatment was applied to a 96,000 m3 class drill-ship to verify its feasibility through a sea-trial. Soon after the hull cleaning had been performed, six ultrasonic projectors were evenly deployed around the starboard shell plate. Driven by a 23 kHz sinusoidal ultrasound in an intermittent manner, the projectors emitted a high-intensity sound reaching 214 dB at the source level causing cavitation around the adjacent water and eventually deterring the settlement of marine fouling organisms. Underwater photographs acquired after four months showed fairly clean slabs on the starboard side, but heavy fouling on the port side. This experiment revealed that ultrasound treatment is a promising method for inhibiting fouling accumulation, even for large-scale ship applications.  相似文献   

10.
Increasing the eco‐efficiency of fishing fleets is currently a major target issue in the seafood sector. This objective has been influenced in recent years by soaring fuel prices, a fact particularly relevant to a sector whose vessels present high energy consumption rates. Efforts to minimize fuel consumption in fishing fleets result in economic benefits and also in important reductions regarding environmental impacts. In this article, we combine life cycle assessment (LCA) and data envelopment analysis (DEA) to jointly discuss the operational and environmental performances of a set of multiple, similar entities. We applied the “five‐step LCA + DEA method” to a wide range of vessels for selected Galician fisheries, including deep‐sea, offshore, and coastal fleets. The environmental consequences of operational inefficiencies were quantified and target performance values benchmarked for inefficient vessels. We assessed the potential environmental performance of target vessels to verify eco‐efficiency criteria (lower input consumption levels, lower environmental impacts). Results revealed the strong dependence of environmental impacts on one major operational input: fuel consumption. The most intensive fuel‐consuming fleets, such as deep sea trawling, were found to entail the diesel consumption levels nearest to the efficiency values. Despite the reduced environmental contributions linked to other operational inputs, such as hull material, antifouling paint, or nets, these may contribute to substantial economic savings when minimized. Finally, given that Galicia is a major fishing region, many of the conclusions and perspectives obtained in this study may be extrapolated to other fishing fleets at the international level.  相似文献   

11.

Ecological problems associated with current antifouling technologies have increased interest in the natural strategies that marine organisms use to keep their surfaces clean and free from fouling. Bacteria isolated from living surfaces in the marine environment have been shown to produce chemicals that are potential antifoulants. Active compounds from the cells and culture supernatant of two bacterial strains, FS‐55 and NudMB50–11, isolated from surface of the seaweed, Fucus serratus, and the nudibranch, Archidoris pseudoargus, respectively, were extracted using solid phase extraction. The extracts were combined with acrylic base paint resin and assayed for antifouling activity by measuring their ability to inhibit the growth of fouling bacteria. These formulations were found to be active against fouling bacteria isolated from marine surfaces. The formulation of antifouling paints that incorporate marine microbial natural products is reported here for the first time. This is a significant advance towards the production of an environmentally friendly antifouling paint that utilises a sustainable supply of natural biodegradable compounds.  相似文献   

12.
The dramatic increase in marine bio‐invasions, particularly of non‐indigenous ascidians, has highlighted the vulnerability of marine ecosystems and the productive sectors that rely on them. A critical issue in managing invasive species is determining the relative roles of ongoing introductions, versus the local movement of propagules from established source populations. Styela clava (Herdman, 1882), the Asian clubbed tunicate, once restricted to the Pacific shores of Asia and Russia, is now abundant throughout the northern and southern hemispheres and has had significant economic impact in at least one site of incursion. In 2005 S. clava was identified in New Zealand. The recent introduction of this species, coupled with its restricted distribution, provided an ideal model to compare and contrast the introduction and expansion process. In this study, the mitochondrial DNA cytochrome oxidase subunit I gene (COI) gene and 11 microsatellite markers were used to test the regional genetic structure and diversity of 318 S. clava individuals from 10 populations within New Zealand. Both markers showed significant differentiation between the northern and southern populations, indicative of minimal pre‐ or post‐border connectivity. Additional statistics further support pre‐ and post‐border differentiation among Port and Harbour populations (i.e. marinas and aquaculture farms). We conclude that New Zealand receives multiple introductions, and that the primary vector for pre‐border incursions and post‐border spread is most likely the extensive influx of recreational vessels that enter northern marinas independent of the Port. This is a timely reminder of the potential for hull‐fouling organisms to expand their range as climates change and open new pathways.  相似文献   

13.
Fouling of ships is an important historical and enduring transfer mechanism of marine nonindigenous species (NIS). Although containerships have risen to the forefront of global maritime shipping since the 1950s, few studies have directly sampled fouling communities on their submerged surfaces, and little is known about differences in the fouling characteristics among commercial ship types. Twenty-two in-service containerships at the Port of Oakland (San Francisco Bay, California) were sampled to test the hypothesis that the extent and taxonomic richness of fouling would be low on this type of ship, resulting from relatively fast speeds and short port durations. The data showed that the extent of macroorganisms (invertebrates and algae) was indeed low, especially across the large surface areas of the hull. Less than 1% of the exposed hull was colonized for all apart from one vessel. These ships had submerged surface areas of >7000 m2, and fouling coverage on this area was estimated to be <l7 m2 per vessel, with zero biota detected on the hulls of many vessels. The outlying smaller vessel (4465 m2) had an estimated coverage of 90% on the hull and also differed substantially from the other ships in terms of its recent voyage history, shorter voyage range and slower speeds. Despite the low extent of fouling, taxonomic richness was high among vessels. Consistent with recent studies, a wide range of organisms were concentrated at more protected and heterogeneous (non-hull) niche areas, including rudders, stern tubes and intake gratings. Green algae and barnacles were most frequently sampled among vessels, but hydroids, bryozoans, bivalves and ascidians were also recorded. One vessel had 20 different species in its fouling assemblage, including non-native species (already established in San Francisco Bay) and mobile species that were not detected in visual surveys. In contrast to other studies, dry dock block areas did not support many organisms, despite little antifouling deterrence in some cases. Comparisons with previous studies suggest that the accumulation of fouling on containerships may be lower than on other ship types (eg bulkers and general cargo vessels), but more data are needed to determine the hierarchy of factors contributing to differences in the extent of macrofouling and non-native species vector risks within the commercial fleet.  相似文献   

14.
A mechanical grooming test was performed on large scale steel test panels coated with a fouling-release (FR) coating (International Intersleek 900), at four different frequencies, during the high fouling season in Port Canaveral, Florida. Grooming at frequencies of three or two times per week was effective at removing heavy biofilm growth and significantly reduced macrofouling settlement. Mechanical grooming at lower frequencies of weekly or bi-weekly removed heavy biofilm growth but was much less effective at reducing macrofouling settlement. The results indicated that frequent mechanical grooming could reduce the fouling rating of ships coated with FR coatings. The reduction in the fouling rating of ships’ hulls by frequent grooming could offer significant reductions in drag, fuel consumption, and the emission of exhaust gases. Frequent grooming could also eliminate the need for hull cleaning and increase the time between dry docking which would reduce the operational costs for many vessel operators.  相似文献   

15.
Antifouling enzymes and the biochemistry of marine settlement   总被引:3,自引:0,他引:3  
Antifouling coatings are used extensively on marine vessels and constructions, but unfortunately they are found to pose a threat to the marine environment, notably due to content of metal-based biocides. Enzymes have repeatedly been proposed as an alternative to traditional antifouling compounds. In this review, the enzymes claimed to hold antifouling activity are classified according to catalytic functions. The enzyme functions are juxtaposed with the current knowledge about the chemistry of settlement and adhesion of fouling organisms. Specific focus will be on bacteria, microalgae, invertebrate larvae and macroalgae zoospores. Two main concepts in enzyme-based antifouling are identified: breakdown of adhesive components and catalytic production of repellent compounds in-situ. The validity of the various modes of action is evaluated and the groups of enzymes with the highest potential are highlighted.  相似文献   

16.
Human transport hubs, such as shipping ports, airports and mail centers are important foci for the spread of non-indigenous species. High relative abundance in a transport hub has been proposed as a correlate of invasion success, since abundant species are thought more likely to colonize vectors and to be transported more frequently. We here evaluate the relative importance of vector characteristics and local source assemblages in determining the pool of species that is transported by hull fouling on recreational boats. We compared the resident fouling communities of three recreational boat harbors in Australia with the assemblages on the hulls of boats that travel between them. We used data on the recent travel and maintenance history of the boats to evaluate correlates of transport probability and the potential for intra-coastal spread of fouling organisms. Invertebrate assemblages on heavily fouled vessels reflected the composition of biotic assemblages within the marina in which they were moored, but by itself, relative abundance in the source port was not a reliable predictor of transport probability. More important was the age of the antifouling paint on the vessels’ hulls, which acted selectively on some groups of organisms. Movements of vessels were characterized by “fidelity” (vessels remaining close to homeport) interspersed with “promiscuity” (vessels traveling to a diverse pool of destinations). In an infested harbor, measures taken to increase the resistance of vectors to colonization by the invader should be effective in slowing the rate of spread to other locations, by decreasing the overall frequency of transport.  相似文献   

17.
18.
The life cycle greenhouse gas (GHG) reduction benefits of vehicle lightweighting (LW) were evaluated in a companion article. This article provides an economic assessment of vehicle LW with aluminum and high‐strength steel. Relevant cost information taken from the literature is synthesized, compiled, and formed into estimates of GHG reduction costs through LW. GHG emissions associated with vehicle LW scenarios between 6% and 23% are analyzed alongside vehicle life cycle costs to achieve these LW levels. We use this information to estimate the cost to remove GHG emissions per metric ton by LW, and we further calculate the difference between added manufacturing cost and fuel cost savings from LW. The results show greater GHG savings derived from greater LW and added manufacturing costs as expected. The associated production costs are, however, disproportionately higher than the fuel cost savings associated with higher LW options. A sensitivity analysis of different vehicle classes confirms that vehicle LW is more cost‐effective for larger vehicles. Also, the cost of GHG emissions reductions through lightweighting is compared with alternative GHG emissions reduction technologies for passenger vehicles, such as diesel, hybrid, and plug‐in hybrid electric powertrains. The results find intensive LW to be a competitive and complementary approach relative to the technological alternatives within the automotive industry but more costly than GHG mitigation strategies available to other industries.  相似文献   

19.
Zhang YF  Zhang H  He L  Liu C  Xu Y  Qian PY 《ACS chemical biology》2012,7(6):1049-1058
Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolide's molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms.  相似文献   

20.
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号