首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Industrial ecology (IE) methodologies, such as input/output or material flow analysis and life cycle assessment (LCA), are often used for the environmental evaluation of circular economy strategies. Up to now, an approach that utilizes these methods in a systematic, integrated framework for a holistic assessment of a geographic region's sustainable circular economy potential has been lacking. The approach developed in this study (IE4CE approach) combines IE methodologies to determine the environmental impact mitigation potential of circular economy strategies for a defined geographic region. The approach foresees five steps. First, input/output analysis helps identify sectors with high environmental impacts. Second, a refined analysis is conducted using material flow and LCA. In step 3, circular strategies are used for scenario design and evaluated in step 4. In step 5, the assessment results are compiled and compared across sectors. The approach was applied to a case study of Switzerland, analyzing 8 sectors and more than 30 scenarios in depth. Carbon capture and storage (CCS) from waste incineration, biogas and cement production, food waste prevention in households, hospitality and production, and the increased recycling of plastics had the highest mitigation potential. Most of the scenarios do not influence each other. One exception is the CCS scenarios: waste avoidance scenarios decrease the reduction potential of CCS. A combination of scenarios from different sectors, including their impact on the CCS scenario potential, led to an environmental impact mitigation potential of 11.9 Mt CO2-eq for 2050, which equals 14% of Switzerland's current consumption-based impacts.  相似文献   

2.
Scrutiny of food packaging environmental impacts has led to a variety of sustainability directives, but has largely focused on the direct impacts of materials. A growing awareness of the impacts of food waste warrants a recalibration of packaging environmental assessment to include the indirect effects due to influences on food waste. In this study, we model 13 food products and their typical packaging formats through a consistent life cycle assessment framework in order to demonstrate the effect of food waste on overall system greenhouse gas (GHG) emissions and cumulative energy demand (CED). Starting with food waste rate estimates from the U.S. Department of Agriculture, we calculate the effect on GHG emissions and CED of a hypothetical 10% decrease in food waste rate. This defines a limit for increases in packaging impacts from innovative packaging solutions that will still lead to net system environmental benefits. The ratio of food production to packaging production environmental impact provides a guide to predicting food waste effects on system performance. Based on a survey of the food LCA literature, this ratio for GHG emissions ranges from 0.06 (wine example) to 780 (beef example). High ratios with foods such as cereals, dairy, seafood, and meats suggest greater opportunity for net impact reductions through packaging‐based food waste reduction innovations. While this study is not intended to provide definitive LCAs for the product/package systems modeled, it does illustrate both the importance of considering food waste when comparing packaging alternatives, and the potential for using packaging to reduce overall system impacts by reducing food waste.  相似文献   

3.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

4.
Energy systems using renewables with adequate energy carriers are needed for sustainability. Before accelerating technology implementation for the transition to the new energy system, region‐specific implementation effects should be carefully examined as a system. In this study, we aim to analyze an energy system using hydrogen as an energy carrier with the approach of combining life cycle assessment and a regional energy simulation model. The model calculates the emissions, such as CO2, nitrogen oxides (NOx), sulfur oxides (SOx), and volatile organic compounds, and their impacts on human health, social assets, primary production, and an integrated index. The analysis quantitatively presented various environmental impacts by region, life cycle stage, and impact category. Climate change was dominant on the integrated index while the other impact categories were also important. Fuel cell vehicles were effective in mitigating local air pollution, especially in high‐population regions where many people are adversely affected. Although technology implementation contributes to mitigating environmental impacts at locations of energy users, it also has possibilities to have negative impacts at locations of device manufacturing and raw material processing. The definition of the regional division was also an important factor in energy system design because the final results of life cycle assessments are highly sensitive to region‐specific characteristics. The proposed region‐specific analysis is expected to support local governments and technology developers in designing appropriate energy systems for regions and building marketing plans for specific targets.  相似文献   

5.
Three‐dimensional (3D) printing and geo‐polymers are two environmentally oriented innovations in concrete manufacturing. The 3D printing of concrete components aims to reduce raw material consumption and waste generation. Geo‐polymer is being developed to replace ordinary Portland cement and reduce the carbon footprint of the binder in the concrete. The environmental performance of the combined use of the two innovations is evaluated through an ex‐ante life cycle assessment (LCA). First, an attributional LCA was implemented, using data collected from the manufacturer to identify the hotspots for environmental improvements. Then, scaled‐up scenarios were built in collaboration with the company stakeholder. These scenarios were compared with the existing production system to understand the potential advantages/disadvantages of the innovative system and to identify the potential directions for improvement. The results indicate that 3D printing can potentially lead to waste reduction. However, depending on its recipe, geo‐polymer likely has higher environmental impacts than ordinary concrete. The ex‐ante LCA suggests that after step‐by‐step improvements in the production and transportation of raw materials, 3D printing geo‐polymer concrete is able to reduce the carbon footprint of concrete components, while it does still perform worse on impact categories, such as depletion of abiotic resources and stratospheric ozone depletion. We found that the most effective way to lower the environmental impacts of 3D concrete is to reduce silicate in the recipe of the geo‐polymer. This approach is, however, challenging to realize by the company due to the locked‐in effect of the previous innovation investment. The case study shows that to support technological innovation ex‐ante LCA has to be implemented as early as possible in innovation to allow for maintaining technical flexibility and improving on the identified hotspots.  相似文献   

6.
This article describes an approach developed to estimate the environmental external costs of the Belgian building sector. Several existing methods and related data sets for determining the monetary value of environmental impacts were reviewed and compared in light of their relevance to an impact assessment of the construction sector. This study concludes that the methods available consider different impacts and differ substantially in monetary values for identical impacts. A harmonized and transparent method is recommended to improve the feasibility and acceptance of internalizing external costs; agreement on the impacts to be assessed and their external costs based on current insights is important. Here, a new method is proposed for a life cycle impact assessment‐based valuation of environmental external costs for application to the Belgian building sector. To enable a comprehensive assessment, it became clear that solely considering “key” pollutants is insufficient. Although this article focuses on the development and not on the implementation of the method proposed, implementation revealed that the life cycle environmental external cost of new buildings (meeting current insulation standards or better) is relatively small compared to the life cycle financial cost.  相似文献   

7.
This study extends existing life cycle assessment (LCA) literature by assessing seven environmental burdens and an overall monetized environmental score for eight recycle, bury, or burn options to manage clean wood wastes generated at construction and demolition activity sites. The study assesses direct environmental impacts along with substitution effects from displacing fossil fuels and managed forest wood sourcing activities. Follow‐on effects on forest carbon stocks, land use, and fuel markets are not assessed. Sensitivity analysis addresses landfill carbon storage and biodegradation rates, atmospheric emissions controls, displaced fuel types, and two alternative carbon accounting methods commonly used for waste management LCAs. Base‐case carbon accounting considers emissions and uptakes of all biogenic and fossil carbon compounds, including biogenic carbon dioxide. Base‐case results show that recycling options (recycling into reconstituted wood products or into wood pulp for papermaking) rank better than all burning or burying options for overall monetized score as well as for climate impacts, except that wood substitution for coal in industrial boilers is slightly better than recycling for the climate. Wood substitution for natural gas boiler fuel has the highest environmental impacts. Sensitivity analysis shows the overall monetized score rankings for recycling options to be robust except for the carbon accounting method, for which all options are highly sensitive. Under one of the alternative methods, wood substitution for coal boiler fuel and landfill options with high methane capture efficiency are the best for the overall score; recycling options are next to the worst. Under the other accounting alternative, wood substitution for coal and waste‐to‐energy are the best, followed by recycling options.  相似文献   

8.
For the practical implementation of the assessment of environmental impact, actual procedures and data requirements should be clarified so that industrial decision makers understand them. Researchers should consider local risks related to processes and environmental impact throughout the life cycle of products simultaneously to supervise these adverse effects appropriately. Life cycle assessment (LCA) is a useful tool for quantifying the potential impact associated with a product life cycle. Risk assessment (RA) is a widely used tool for identifying chemical risks in a specific situation. In this study, we integrate LCA and RA for risk‐based decision making by devising a hierarchical activity model using the type‐zero method of integrated definition language (IDEF0). The IDEF0 activity modeling language has been applied to connect activities with information flows. Process generation, evaluation, and decision making are logically defined and visualized in the activity model with the required information. The activities, information flows, and their acquisitions are revealed, with a focus on which data should be collected by on‐site engineers. A case study is conducted on designing a metal cleaning process reducing chemical risks due to the use of a cleansing agent. LCA and RA are executed and applied effectively on the basis of integrated objective settings and interpretation. The proposed activity model can be used as a foundation to incorporate such assessments into actual business models.  相似文献   

9.
Purpose

The purpose of this study is to provide an integrated method to identify the resource consumption, environmental emission, and economic cost for mechanical product manufacturing from economic and ecological dimensions and ultimately to provide theoretical and data support of energy conservation and emission reduction for mechanical product manufacturing.

Methods

The applied research methods include environmental life cycle assessment (LCA) and life cycle cost (LCC). In life cycle environmental assessment, the inventory data are referred from Chinese Life Cycle Database and midpoint approach and EDIP2003 and CML2001 models of life cycle impact assessment (LCIA) are selected. In life cycle cost assessment, three cost categories are considered. The proposed environment and cost assessment method is based on the theory of social willingness to pay for potential environmental impacts. With the WD615 Steyr engine as a case, life cycle environment and cost are analyzed and evaluated.

Results and discussion

The case study indicates that, in different life cycle phases, the trend of cost result is generally similar to the environmental impacts; the largest proportion of cost and environmental impact happened in the two phases of “material production” and “component manufacturing” and the smallest proportion in “material transport” and “product assembly.” The environmental impact category of Chinese resource depletion potential (CRDP) accounted for the largest proportion, followed by global warming potential (GWP) and photochemical ozone creation potential (POCP), whereas the impacts of eutrophication potential (EP) and acidification potential (AP) are the smallest. The life cycle “conventional cost” accounted for almost all the highest percentage in each phase (except “material transport” phase), which is more than 80% of the total cost. The “environmental cost” and “possible cost” in each phase are relatively close, and the proportion of which is far below the “conventional cost.”

Conclusions

The proposed method enhanced the conventional LCA. The case results indicate that, in a life cycle framework, the environment and cost analysis results could support each other, and focusing on the environment and cost analysis for mechanical product manufacturing will contribute to a more comprehensive eco-efficiency assessment. Further research on the life cycle can be extended to phases of “early design,” “product use,” and “final disposal.” Other LCIA models and endpoint indicators are advocated for this environmental assessment. Environmental cost can also be further investigated, and the relevant social willingness to pay for more environmental emissions is advocated to be increased.

  相似文献   

10.
Purpose

Waste recycling is one of the essential tools for the European Union’s transition towards a circular economy. One of the possibilities for recycling wood and plastic waste is to utilise it to produce composite product. This study analyses the environmental impacts of producing composite pallets made of wood and plastic waste from construction and demolition activities in Finland. It also compares these impacts with conventional wooden and plastic pallets made of virgin materials.

Methods

Two different life cycle assessment methods were used: attributional life cycle assessment and consequential life cycle assessment. In both of the life cycle assessment studies, 1000 trips were considered as the functional unit. Furthermore, end-of-life allocation formula such as 0:100 with a credit system had been used in this study. This study also used sensitivity analysis and normalisation calculation to determine the best performing pallet.

Result and discussion

In the attributional cradle-to-grave life cycle assessment, wood-polymer composite pallets had the lowest environmental impact in abiotic depletion potential (fossil), acidification potential, eutrophication potential, global warming potential (including biogenic carbon), global warming potential (including biogenic carbon) with indirect land-use change, and ozone depletion potential. In contrast, wooden pallets showed the lowest impact on global warming potential (excluding biogenic carbon). In the consequential life cycle assessment, wood-polymer composite pallets showed the best environmental impact in all impact categories. In both attributional and consequential life cycle assessments, plastic pallet had the maximum impact. The sensitivity analysis and normalisation calculation showed that wood-polymer composite pallets can be a better choice over plastic and wooden pallet.

Conclusions

The overall results of the pallets depends on the methodological approach of the LCA. However, it can be concluded that the wood-polymer composite pallet can be a better choice over the plastic pallet and, in most cases, over the wooden pallet. This study will be of use to the pallet industry and relevant stakeholders.

  相似文献   

11.
Social life cycle assessment (S‐LCA) has been discussed for some years in the LCA community. We raise two points of criticism against current S‐LCA approaches. First, the development of S‐LCA methodology has not, to date, been based on experience with actual case studies. Second, for social impacts to be meaningfully assessed in a life cycle perspective, social indicators need to be unambiguously interpreted in all social contexts along the life cycle. We here discuss an empirically based approach to S‐LCA, illustrated by a case study of an automobile airbag system. The aim of the case study is to compare the injuries and lives lost during the product life cycle of the airbag system (excluding waste handling impacts) with the injuries prevented and lives saved during its use. The indicator used for assessing social impacts in this study is disability‐adjusted life years (DALY). The results from this study indicate that the purpose of an airbag system, which is to save lives and prevent injuries, is justified also in a life cycle perspective.  相似文献   

12.
Many authors have agreed on the interest of considering environmental concerns in the early stages of product development. However, most eco‐design tools are based on life cycle assessment principles and require a model to give information about the product's environmental performance. This modeling can have negative effects on team performance and on the potential for innovation, not to mention on the project's duration. Additionally, the model requires information that is not available in the early design stages. This article analyzes the potential of inferring conclusions about the life cycle stages with the highest impact by using similar products. From a database of previous products, environmental profile estimations are carried out, that is, the assessments of the contribution of each life cycle stage to the total impact and the variability of this measure. It is then possible to discard—or ensure consideration of—life cycle stages. Furthermore, the level of the conclusions is assessed on a five‐point scale. The proposed approach is applied to four case studies with different levels of abstraction and the relevance of the conclusions is assessed. The article resolves the problems regarding potential for estimating the distribution of the environmental impacts along the life cycle.  相似文献   

13.

Introduction  

Waste management is a key component in society's strategy to mitigate the adverse effects of its economic activities. Through its comprehensive system approach, life cycle assessment (LCA) is frequently put forward as a powerful tool for the assessment of waste management activities. However, many methodological challenges regarding the environmental assessment of waste treatment systems still remain, and consensus is still far from being reached in areas like the definition of (temporal) system boundaries, life cycle inventory generation, selection and use of environmental indicators, and interpretation and communication of the LCA results.  相似文献   

14.

Purpose

The oft-cited waste hierarchy is considered an important rule of thumb to identify preferential waste management options and places waste prevention at the top. Nevertheless, it has been claimed that waste prevention can sometimes be less favorable than recycling because (1) recycling decreases only the primary production of materials, whereas waste prevention may reduce a combination of both primary and low-impact secondary production, and (2) waste prevention decreases the quantity of material recycled downstream and the avoided impacts associated with recycling. In response to this claim, this study evaluates the life cycle effects of waste prevention activities (WPAs) on a residential waste management system.

Methods

This life cycle assessment (LCA) contrasts the net impacts of a large residential solid waste management system (including sanitary landfilling, anaerobic digestion, composting, and recycling) with a system that incorporates five WPAs, implemented at plausible levels (preventing a total of 3.6 % of waste generation tonnage) without diminishing product service consumption. WPAs addressed in this LCA reduce the collected tonnage of addressed advertising mail, disposable plastic shopping bags, newspapers, wine and spirit packaging, and yard waste (grass).

Results and discussion

In all cases, the WPAs reduce the net midpoint and endpoint level impacts of the residential waste management system. If WPAs are incorporated, the lower impacts from waste collection, transportation, sorting, and disposal as well as from the avoided upstream production of goods, more than compensate for the diminished net benefits associated with recycling and the displaced electricity from landfill gas utilization.

Conclusions

The results substantiate the uppermost placement of waste prevention within the waste hierarchy. Moreover, further environmental benefits from waste prevention can be realized by targeting WPAs at goods that will be landfilled and at those with low recycled content.  相似文献   

15.
Symbiotic linkages in industry clusters in the form of interconnected materials, energy and information flows, and close proximity provide unique opportunities to develop efficient environmental strategies. The purpose of our study is to examine the practical potential of applying a life cycle approach in strategy evaluations, as the environmental impact caused by industrial symbiosis systems outside the company gates has been scarcely addressed. This is done by evaluating two strategies for an industry cluster in Sweden: (1) to replace a share of the fossil feedstock used in the industry cluster with forest‐based feedstock and (2) to improve energy efficiency through thermal energy integration. The environmental impact reduction potential of the strategies is evaluated using life cycle assessment. The ratio between investment cost and reduced global warming potential is used as an indicator to evaluate the cost‐effectiveness of the strategies. Results demonstrate the importance of applying a life cycle perspective as the assessment outcome depends heavily on whether only on‐site consequences are assessed or if upstream and downstream processes are also included. 20% of the greenhouse gas emission reduction of the energy integration strategy occurs off‐site, whereas the forest strategy has the largest reduction potential off‐site, >80%.  相似文献   

16.
Studies of industrial symbiosis (IS) focus on the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are shared or exchanged among the actors of the system, thereby reducing the consumption of virgin material and energy inputs, and likewise the generation of waste and emissions. In this study, the environmental impacts of an industrial ecosystem centered around a pulp and paper mill and operating as an IS are analyzed using life cycle assessment (LCA). The system is compared with two hypothetical reference systems in which the actors would operate in isolation. Moreover, the system is analyzed further in order to identify possibilities for additional links between the actors. The results show that of the total life cycle impacts of the system, upstream processes made the greatest overall contribution to the results. Comparison with stand‐alone production shows that in the case studied, the industrial symbiosis results in modest improvements, 5% to 20% in most impact categories, in the overall environmental impacts of the system. Most of the benefits occur upstream through heat and electricity production for the local town. All in all it is recommended that when the environmental impacts of industrial symbiosis are assessed, the impacts occurring upstream should also be studied, not only the impacts within the ecosystem.  相似文献   

17.
Many existing methods for sustainable technical product design focus on environmental efficiency while lacking a framework for a holistic, sustainable design approach that includes combined social, technical, economic, and environmental aspects in the whole product life cycle, and that provides guidance on a technical product development level. This research proposes a framework for sustainable technical product design in the case of skis. We developed a ski under the Grown brand, benchmarked according to social, environmental, economic, and technical targets, following an initial sustainability assessment, and delivered the first environmental life cycle assessment (ELCA) and the first social life cycle assessment (SLCA) of skis. The framework applies a virtual development process as a combination of ELCA to calculate the environmental footprint as carbon equivalents of all materials and processes and a technical computer‐aided design (CAD) and computer‐aided engineering (CAE) simulation and virtual optimization using parameter studies for the nearly prototype‐free development of the benchmarked skis. The feedback loops between life cycle assessment (LCA) and virtual simulation led to the elimination of highly energy intensive materials, to the pioneering use of basalt fibers in skis, to the optimization of the use of natural materials using protective coatings from natural resins, and to the optimization of the production process. From an environmental perspective, a minimum 32% reduction in carbon equivalent emissions of materials in relation to other comparably performing skis has been achieved, as well as a pioneering step forward toward transparent communication of the environmental performance by the individual, comparable, and first published ski carbon footprint per volume unit.  相似文献   

18.
Background, aim, and scope  To minimize the environmental impacts of construction and simultaneously move closer to sustainable development in the society, the life cycle assessment of buildings is essential. This article provides an environmental life cycle assessment (LCA) of a typical commercial office building in Thailand. Almost all commercial office buildings in Thailand follow a similar structural, envelope pattern as well as usage patterns. Likewise, almost every office building in Thailand operates on electricity, which is obtained from the national grid which limits variability. Therefore, the results of the single case study building are representative of commercial office buildings in Thailand. Target audiences are architects, building construction managers and environmental policy makers who are interested in the environmental impact of buildings. Materials and methods  In this work, a combination of input–output and process analysis was used in assessing the potential environmental impact associated with the system under study according to the ISO14040 methodology. The study covered the whole life cycle including material production, construction, occupation, maintenance, demolition, and disposal. The inventory data was simulated in an LCA model and the environmental impacts for each stage computed. Three environmental impact categories considered relevant to the Thailand context were evaluated, namely, global warming potential, acidification potential, and photo-oxidant formation potential. A 50-year service time was assumed for the building. Results  The results obtained showed that steel and concrete are the most significant materials both in terms of quantities used, and also for their associated environmental impacts at the manufacturing stage. They accounted for 24% and 47% of the global warming potential, respectively. In addition, of the total photo-oxidant formation potential, they accounted for approximately 41% and 30%; and, of the total acidification potential, 37% and 42%, respectively. Analysis also revealed that the life cycle environmental impacts of commercial buildings are dominated by the operation stage, which accounted for approximately 52% of the total global warming potential, about 66% of the total acidification potential, and about 71% of the total photo-oxidant formation potential, respectively. The results indicate that the principal contributor to the impact categories during the operation phase were emissions related to fossil fuel combustion, particularly for electricity production. Discussion  The life cycle environmental impacts of commercial buildings are dominated by the operation stage, especially electricity consumption. Significant reductions in the environmental impacts of buildings at this stage can be achieved through reducing their operating energy. The results obtained show that increasing the indoor set-point temperature of the building by 2°C, as well as the practice of load shedding, reduces the environmental burdens of buildings at the operation stage. On a national scale, the implementation of these simple no-cost energy conservation measures have the potential to achieve estimated reductions of 10.2% global warming potential, 5.3% acidification potential, and 0.21% photo-oxidant formation potential per year, respectively, in emissions from the power generation sector. Overall, the measures could reduce approximately 4% per year from the projected global warming potential of 211.51 Tg for the economy of Thailand. Conclusions  Operation phase has the highest energy and environmental impacts, followed by the manufacturing phase. At the operation phase, significant reductions in the energy consumption and environmental impacts can be achieved through the implementation of simple no-cost energy conservation as well as energy efficiency strategies. No-cost energy conservation policies, which minimize energy consumption in commercial buildings, should be encouraged in combination with already existing energy efficiency measures of the government. Recommendations and perspectives  In the long run, the environmental impacts of buildings will need to be addressed. Incorporation of environmental life cycle assessment into the current building code is proposed. It is difficult to conduct a full and rigorous life cycle assessment of an office building. A building consists of many materials and components. This study made an effort to access reliable data on all the life cycle stages considered. Nevertheless, there were a number of assumptions made in the study due to the unavailability of adequate data. In order for life cycle modeling to fulfill its potential, there is a need for detailed data on specific building systems and components in Thailand. This will enable designers to construct and customize LCAs during the design phase to enable the evaluation of performance and material tradeoffs across life cycles without the excessive burden of compiling an inventory. Further studies with more detailed, reliable, and Thailand-specific inventories for building materials are recommended.  相似文献   

19.
Environmental Impacts of Products: A Detailed Review of Studies   总被引:2,自引:0,他引:2  
Environmental effects of economic activities are ultimately driven by consumption, via impacts of the production, use, and waste management phases of products and services ultimately consumed. Integrated product policy (IPP) addressing the life‐cycle impacts of products forms an innovative new generation of environmental policy. Yet this policy requires insight into the final consumption expenditures and related products that have the greatest life‐cycle environmental impacts. This review article brings together the conclusions of 11 studies that analyze the life‐cycle impacts of total societal consumption and the relative importance of different final consumption categories. This review addresses in general studies that were included in the project Environmental Impacts of Products (EIPRO) of the European Union (EU), which form the basis of this special issue. Unlike most studies done in the past 25 years on similar topics, the studies reviewed here covered a broad set of environmental impacts beyond just energy use or carbon dioxide (CO2) emissions. The studies differed greatly in basic approach (extrapolating LCA data to impacts of consumption categories versus approaches based on environmentally extended input‐output (EEIO) tables), geographical region, disaggregation of final demand, data inventory used, and method of impact assessment. Nevertheless, across all studies a limited number of priorities emerged. The three main priorities, housing, transport, and food, are responsible for 70% of the environmental impacts in most categories, although covering only 55% of the final expenditure in the 25 countries that currently make up the EU. At a more detailed level, priorities are car and most probably air travel within transport, meat and dairy within food, and building structures, heating, and (electrical) energy‐using products within housing. Expenditures on clothing, communication, health care, and education are considerably less important. Given the very different approaches followed in each of the sources reviewed, this result hence must be regarded as extremely robust. Recommendations are given to harmonize and improve the methodological approaches of such analyses, for instance, with regard to modeling of imports, inclusion of capital goods, and making an explicit distinction between household and government expenditure.  相似文献   

20.
The environmental assessment of nanomanufacturing during the initial process design phase should lead to the development of competitive, safe, and environmentally responsible engineering and commercialization. Given the potential benefits and concerns regarding the use of single‐walled carbon nanotubes (SWNTs), three SWNT production processes have been investigated to assess their associated environmental impacts. These processes include arc ablation (arc), chemical vapor deposition (CVD), and high‐pressure carbon monoxide (HiPco). Without consideration of the currently unknown impacts of SWNT dispersion or other health impacts, life cycle assessment (LCA) methodology is used to analyze the environmental impact and provide a baseline for the environmental footprint of each manufacturing process. Although the technical attributes of the product resulting from each process may not be fully comparable, this study presents comparisons that show that the life cycle impacts are dominated by energy, specifically the electricity used in production. Under base case yield conditions, HiPco shows the lowest environmental impact, while the arc process has the lowest impact under best case yield conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号