首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Purpose

Trade is increasingly considered a significant contributor to environmental impacts. The assessment of the impacts of trade is usually performed via environmentally extended input–output analysis (EEIOA). However, process-based life cycle assessment (LCA) applied to traded goods allows increasing the granularity of the analysis and may be essential to unveil specific impacts due to traded products.

Methods

This study assesses the environmental impacts of the European trade, considering two modelling approaches: respectively EEIOA, using EXIOBASE 3 as supporting database, and process-based LCA. The interpretation of the results is pivotal to improve the robustness of the assessment and the identification of hotspots. The hotspot identification focuses on temporal trends and on the contribution of products and substances to the overall impacts. The inventories of elementary flows associated with EU trade, for the period 2000–2010, have been characterized considering 14 impact categories according to the Environmental Footprint (EF2017) Life Cycle Impact Assessment method.

Results and discussion

The two modelling approaches converge in highlighting that in the period 2000–2010: (i) EU was a net importer of environmental impacts; (ii) impacts of EU trade and EU trade balance (impacts of imports minus impacts of exports) were increasing over time, regarding most impact categories under study; and (iii) similar manufactured products were the main contributors to the impacts of exports from EU, regarding most impact categories. However, some results are discrepant: (i) larger impacts are obtained from IO analysis than from process-based LCA, regarding most impact categories, (ii) a different set of most contributing products is identified by the two approaches in the case of imports, and (iii) large differences in the contributions of substances are observed regarding resource use, toxicity, and ecotoxicity indicators.

Conclusions

The interpretation step is crucial to unveil the main hotspots, encompassing a comparison of the differences between the two methodologies, the assumptions, the data coverage and sources, the completeness of inventory as basis for impact assessment. The main driver for the observed divergences is identified to be the differences in the impact intensities of goods, both induced by inherent properties of the IO and life cycle inventory databases and by some of this study’s modelling choices. The combination of IO analysis and process-based LCA in a hybrid framework, as performed in other studies but generally not at the macro-scale of the full trade of a country or region, appears a potential important perspective to refine such an assessment in the future.

  相似文献   

2.
For developing product policy, insight into the environmental effects of products is required. But available life-cycle assessment studies (LCAs) are hardly comparable between different products and do not cover total consumption. Input-output analysis with environmental extensions (EEIOA) of full consumption is not available for the European Union. Available country studies have a low sector resolution and a limited number of environmental extensions. This study fills the gap between detailed LCA and low-resolution EEIOA, specifying the environmental effects of household consumption in the European Union, discerning nearly 500 sectors, while specifying a large number of environmental extensions. Added to the production sectors are a number of consumption activities with direct emissions, such as automobile driving, cooking and heating, and a number of postconsumer waste management sectors. The data for Europe have been constructed by using the sparse available and coarse economic and environmental data on European countries and adding technological detail mainly based on data from the United States.
A small number of products score high on environmental impact per Euro and also have a substantial share of overall consumer expenditure. Several meat and dairy products, household heating, and car driving thus have a large share of the total environmental impact. Due to their sales volume, however, products with a medium or low environmental score per Euro may also have a substantial impact. This is the case with bars and restaurants, clothing, residential construction, and even a service such as telecommunications. The limitations in real European data made heroic assumptions necessary to operationalize the model. One conclusion, therefore, is that provision of data in Europe urgently needs to be improved, at least to the level of sector detail currently available for the United States and Japan.  相似文献   

3.
刘晶茹  刘瑞权  姚亮 《生态学报》2012,32(20):6553-6557
生产和消费是产生诸多环境问题的根本原因,而可持续生产和消费则是实现可持续发展的根本途径。基于产业生态学视角,界定了可持续消费的定义及内涵,认为可持续消费首先须符合代内公平、代际公平和资源能源永续合理利用等可持续理念;其次辨识了可持续消费研究依次经历关注消费者行为直接环境影响、关注产品和服务生命周期环境影响到关注消费者责任3个阶段;最后结合我国城市化、工业化背景,提出我国可持续消费研究应该以城市居民为重点、加强生命周期数据库建设和内注重可持续生产等建议。  相似文献   

4.
Life cycle assessment (LCA) and environmentally extended input–output analyses (EEIOA) are two techniques commonly used to assess environmental impacts of an activity/product. Their strengths and weaknesses are complementary, and they are thus regularly combined to obtain hybrid LCAs. A number of approaches in hybrid LCA exist, which leads to different results. One of the differences is the method used to ensure that mixed LCA and EEIOA data do not overlap, which is referred to as correction for double counting. This aspect of hybrid LCA is often ignored in reports of hybrid assessments and no comprehensive study has been carried out on it. This article strives to list, compare, and analyze the different existing methods for the correction of double counting. We first harmonize the definitions of the existing correction methods and express them in a common notation, before introducing a streamlined variant. We then compare their respective assumptions and limitations. We discuss the loss of specific information regarding the studied activity/product and the loss of coherent financial representation caused by some of the correction methods. This analysis clarifies which techniques are most applicable to different tasks, from hybridizing individual LCA processes to integrating complete databases. We finally conclude by giving recommendations for future hybrid analyses.  相似文献   

5.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

6.
Life Cycle Impact Assessment (LCIA) results are typically reported as individual scores, or as a breakdown of the most direct inputs; either as absolute values or relative scores. It is proposed to report not only the direct or primary LCIA scores, but also the impacts from secondary and tertiary processes. A graphical technique to report LCIA results is described where a combination of pie and donut charts, with the inner most layer representing direct impacts and subsequent outer layers representing preceding indirect impacts, is presented. An MS-EXCEL spread sheet is presented where the methods and outcomes are shown. This can then be used to display LCIA results. It is possible to present both primary and indirect impacts in a single figure. Significant indirect impacts contributing to the total score of an LCA are clearly visible.  相似文献   

7.
Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a systematic viewpoint to achieve sustainable development. Overall, SPA is a useful tool in empirical studies, and it can be used to analyze national environmental impacts and guide future mitigation policies.  相似文献   

8.
Consequential life cycle assessment (CLCA) has emerged as a tool for estimating environmental impacts of changes in product systems that go beyond physical relationships accounted for in attributional LCA (ALCA). This study builds on recent efforts to use more complex economic models for policy‐based CLCA. A partial market equilibrium (PME) model, called the U.S. Forest Products Module (USFPM), is combined with LCA to analyze an energy demand scenario in which wood use increases 400 million cubic meters in the United States for ethanol production. Several types of indirect economic and environmental impacts are identified and estimated using USFPM‐LCA. A key finding is that if wood use for biofuels increases to high levels and mill residue is used for biofuels and replaced by natural gas for heat and power in forest products mills, then the increased greenhouse gas emissions from natural gas could offset reductions obtained by substituting biofuels for gasoline. Such high levels of biofuel demand, however, appear to have relatively low environmental impacts across related forest product sectors.  相似文献   

9.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

10.
There is an increasing worldwide concern about the problem of dealing with the waste electrical and electronic equipment (WEEE), given the high volume of appliances that are disposed of every day. In this article, an environmental evaluation of WEEE is performed that combines life cycle assessment (LCA) methodology and multivariate statistical techniques. Because LCA handles a large number of data in its different phases, when one is trying to uncover the structure of large multidimensional data sets, multivariate statistical techniques can provide useful information. In particular, principal‐component analysis and multidimensional scaling are two important dimension‐reducing tools that have been shown to be of help in understanding this type of complex multivariate data set. In this article, we use a variable selection method that reduces the number of categories for which the environmental impacts have to be computed; this step is especially useful when the number of impact categories or the number of products or processes to benchmark increases. We provide a detailed illustration showing how we have used the proposed approach to analyze and interpret the environmental impacts of different domestic appliances.  相似文献   

11.

Purpose

The construction industry has considerable impacts on the environment, economy, and society. Although quantifying and analyzing the sustainability implications of the built environment is of great importance, it has not been studied sufficiently. Therefore, the overarching goal of this study is to quantify the overall environmental, economic, and social impacts of the U.S. construction sectors using an economic input–output-based sustainability assessment framework.

Methods

In this research, the commodity-by-industry supply and use tables published by the U.S. Bureau of Economic Analysis, as part of the International System of National Accounts, are merged with a range of environmental, economic, and social metrics to develop a comprehensive sustainability assessment framework for the U.S. construction industry. After determining these sustainability assessment metrics, the direct and indirect sustainability impacts of U.S construction sectors have been analyzed from a triple bottom-line perspective.

Results

When analyzing the total sustainability impacts by each construction sector, “Residential Permanent Single and Multi-Family Structures" and "Other Non-residential Structures" are found to have the highest environmental, economic, and social impacts in comparison with other construction sectors. The analysis results also show that indirect suppliers of construction sectors have the largest sustainability impacts compared with on-site activities. For example, for all U.S. construction sectors, on-site construction processes are found to be responsible for less than 5 % of total water consumption, whereas about 95 % of total water use can be attributed to indirect suppliers. In addition, Scope 3 emissions are responsible for the highest carbon emissions compared with Scopes 1 and 2. Therefore, using narrowly defined system boundaries by ignoring supply chain-related impacts can result in underestimation of triple bottom-line sustainability impacts of the U.S. construction industry.

Conclusions

Life cycle assessment (LCA) studies that consider all dimensions of sustainability impacts of civil infrastructures are still limited, and the current research is an important attempt to analyze the triple bottom-line sustainability impacts of the U.S. construction sectors in a holistic way. We believe that this comprehensive sustainability assessment model will complement previous LCA studies on resource consumption of U.S. construction sectors by evaluating them not only from environmental standpoint, but also from economic and social perspectives.  相似文献   

12.
In view of recent studies of the historical development and current status of industrial symbiosis (IS), life cycle assessment (LCA) is proposed as a general framework for quantifying the environmental performance of by‐product exchange. Recent guidelines for LCA (International Reference Life Cycle Data System [ILCD] guidelines) are applied to answer the main research questions in the IS literature reviewed. A typology of five main research questions is proposed: (1) analysis, (2) improvement, and (3) expansion of existing systems; (4) design of new eco‐industrial parks, and (5) restructuring of circular economies. The LCA guidelines were found useful in framing the question and choosing an appropriate reference case for comparison. The selection of a correct reference case reduces the risk of overestimating the benefits of by‐product exchange. In the analysis of existing systems, environmentally extended input‐output analysis (EEIOA) can be used to streamline the analysis and provide an industry average baseline for comparison. However, when large‐scale changes are applied to the system, more sophisticated tools are necessary for assessment of the consequences, from market analysis to general equilibrium modeling and future scenario work. Such a rigorous application of systems analysis was not found in the current IS literature, but would benefit the field substantially, especially when the environmental impact of large‐scale economic changes is analyzed.  相似文献   

13.
A key requirement for those in industry and elsewhere who wish to reduce the environmental impact of a product is to develop priorities for action. Life cycle assessment (LCA) is increasingly used to identify such priorities but can be misleading. This article draws attention to two effects that can occur when the system boundary for a product LCA is not defined correctly. We illustrate the "washing machine effect" by showing that in separate life cycle studies of clothing, detergents, and washing machines, the use of energy is dominated by operation of the washing machine. All three studies prioritize the use phase for action, but in an aggregated study, double counting of the use-phase impact occurs. We demonstrate the "inverse washing machine effect" with an example related to energy used in transport. We show that some activities that are significant on a cumulative basis consistently fall outside the chosen system boundary for individual products. A consequence is that when LCA studies are used for prioritization, they are in danger of overemphasizing the use-phase impacts and overlooking the impacts from indirect activities. These effects, which are broadly understood by LCA developers, appear not to be understood properly by those who use LCA to direct priorities for action. Therefore, practitioners should be wary of using LCA for prioritizing action, and LCA guidance documents should reflect this caution.  相似文献   

14.
Life cycle assessment (LCA) and urban metabolism (UM) are popular approaches for urban system environmental assessment. However, both approaches have challenges when used across spatial scales. LCA tends to decompose systemic information into micro‐level functional units that mask complexity and purpose, whereas UM typically equates aggregated material and energy flows with impacts and is not ideal for revealing the mechanisms or alternatives available to reduce systemic environmental risks. This study explores the value of integrating UM with LCA, using vehicle transportation in the Phoenix metropolitan area as an illustrative case study. Where other studies have focused on the use of LCA providing upstream supply‐chain impacts for UM, we assert that the broader value of the integrated approach is in (1) the ability to cross scales (from micro to macro) in environmental assessment and (2) establishing an analysis that captures function and complexity in urban systems. The results for Phoenix show the complexity in resource supply chains and critical infrastructure services, how impacts accrue well beyond geopolitical boundaries where activities occur, and potential system vulnerabilities.  相似文献   

15.
Life cycle assessment (LCA) is a methodology for assessing the environmental impacts associated with products throughout their lifecycle. Many impacts are accounted for within the LCA framework, but to date biodiversity impacts have received little attention. There are a number of existing direct and indirect measures of biodiversity within the ecological field, some of which have the potential to be developed into a useable method for LCA. However, our assessment is that considerable development would be required and their implementation for LCA is not likely in the foreseeable future. Here an alternative approach is proposed for rapidly incorporating biodiversity impacts into LCA. The approach relies on expert opinions through a series of questions which aim to encapsulate the main issues relating to biodiversity within a disturbance impact framework. While the technique is in its infancy we outline a foundation for the approach and identify the steps required to develop this method for implementation into LCA.  相似文献   

16.
Classification in LCA: Building of a coherent family of criteria   总被引:1,自引:0,他引:1  
There is a very close analogy between Life Cycle Assessment (LCA) and decision making tools such as the multicritcria approach. LCA is a particular model of a multicriteria decision making tool which is applied to environmental data. The similarities between LCA and multicriteria decision making tools are highlighted. The strict precision of multicriteria decision making tools is used to improve classification. For this, six dimensions (or axes of significance) of environmental impacts can be distinguished. The aim is to build a coherent family of environmental data from these considerations. Rules for the building of this family are proposed.  相似文献   

17.
Eco-efficiency at the product level is defined as product value per unit of environmental impact. In this paper we present a method for quantifying the eco-efficiency using quality function deployment (QFD) and life-cycle impact assessment (LCIA). These well-known tools are widely used in the manufacturing industry.
QFD, which is one of the methods used in product development based on consumer preferences, is introduced to calculate the product value. An index of the product value is calculated as the weighted average of improvement rates of quality characteristics. The importance of customer requirements, derived from the QFD matrix, is applied.
Environmental impacts throughout a product life cycle are calculated based on an LCIA method widely used in Japan. By applying the LCIA method of endpoint type, the endpoint damage caused by various life-cycle inventories is calculated. Willingness to pay is applied to integrate it into a single index.
Eco-design support tools, namely, the life-cycle planning (LCP) tool and the life-cycle assessment (LCA) tool, have already been developed. Using these tools, data required for calculation of the eco-efficiency of products can be collected. The product value is calculated based on QFD data stored in the LCP tool and the environmental impact is calculated using the LCA tool.
Case studies of eco-efficiency are adopted and the adequacy of this method is clarified. Several advantages of this method are characterized.  相似文献   

18.
In recent literature, prospective application of life cycle assessment (LCA) at low technology readiness levels (TRL) has gained immense interest for its potential to enable development of emerging technologies with improved environmental performances. However, limited data, uncertain functionality, scale up issues and uncertainties make it very challenging for the standard LCA guidelines to evaluate emerging technologies and requires methodological advances in the current LCA framework. In this paper, we review published literature to identify major methodological challenges and key research efforts to resolve these issues with a focus on recent developments in five major areas: cross‐study comparability, data availability and quality, scale‐up issues, uncertainty and uncertainty communication, and assessment time. We also provide a number of recommendations for future research to support the evaluation of emerging technologies at low technology readiness levels: (a) the development of a consistent framework and reporting methods for LCA of emerging technologies; (b) the integration of other tools with LCA, such as multicriteria decision analysis, risk analysis, technoeconomic analysis; and (c) the development of a data repository for emerging materials, processes, and technologies.  相似文献   

19.
Life cycle assessment (LCA) is a quantitative tool used to evaluate the environmental impacts of products or processes. With respect to buildings, LCA can be used to evaluate the environmental impacts of an entire building's life cycle. Currently LCA in the building area is used in a limited capacity, primarily to select building products. In order to determine the causality for the lack of whole‐building LCAs, focus groups with members of the architecture, engineering, and construction (AEC) communities were held. This article investigates the current level of knowledge of LCA in the AEC community and then discusses the benefits and barriers to the practice of LCA. In summary, the goal of the research was to identify why LCA is not used to its fullest potential in a whole‐building LCA. In an open forum and moderated setting, focus group participants were asked individually to self‐identify their experience with LCA, a brief education session on LCA was held, and then benefits and barriers to LCA were discussed. The focus group sessions were transcribed and systematically coded by social researchers in order to analyze the results. Hybrid flow and radar charts were developed. From the focus group results, the most important benefit to LCA was “provides information about environmental impacts.” The results did not identify a prominent barrier; however, building‐related metrics were ascertained to be one of the more crucial barriers. The benefits and barriers classified by this analysis will be utilized to develop a subsequent online survey to further understand the LCA and AEC community.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号