首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluating the sustainability of the urban water cycle is not straightforward, although a variety of methods have been proposed. Given the lack of integrated data about sewers, we applied the eco‐efficiency approach to two case studies located in Spain with contrasting climate, population, and urban and sewer configurations. Our goal was to determine critical variables and life cycle stages and provide results for decision making. We used life cycle assessment and life cycle costing to evaluate their environmental and economic impacts. Results showed that both cities have a similar profile, albeit their contrasting features, that is, operation and maintenance, was the main environmental issue (50% to 70% of the impacts) and pipe installation registered the greatest economic capital expenditure (70% to 75%) due to labor. The location of the wastewater treatment plant (WWTP) is an essential factor in our analysis mainly due to the topography effects (e.g., the annual pump energy was 13 times greater in Calafell). Using the eco‐efficiency portfolio, we observed that sewers might be less eco‐efficient than WWTPs and that we need to envision their design in the context of an integrated WWTP‐sewer management to improve sewer performance. In terms of methodological approach, the bidimensional nature of eco‐efficiency enables the benchmarking of product systems and might be more easily interpreted by the general public. However, there are still some constraints that should be addressed to improve communication, such as the selection of indicators discussed in the article.  相似文献   

2.
Sustainability assessment standards are currently being developed for a range of building products. This activity has been stimulated through the considerable success of the U.S. Green Building Council's (USGBC) LEED? standard. Transparent life cycle–based standards can guide manufacturers to design products that have reduced environmental impact. The use of a sustainability standard can certify performance and avoid green washing. In this article we present a logical framework for designing a sustainability assessment standard through the creation of tables that award points in the standard to be consistent with life cycle information. Certain minimum principles of consistency are articulated. In the case that the life cycle impact assessment method maps the life cycle inventory to impact through a linear weighting, two design approaches—impact category and activity substitution—are constructed to be consistent with these principles. The approach is illustrated in a case study of a partial redesign of a carpet sustainability assessment standard (NSF/ANSI‐140).  相似文献   

3.
This study aims to assess the environmental impacts of canned sardines in olive oil, by considering fishing, processing, and packaging, using life cycle assessment (LCA) methodology. The case study concerns a product of a canning factory based in Portugal and packed in aluminum cans. It is the first LCA of a processed seafood product made with the traditional canning method. The production of both cans and olive oil are the most important process in the considered impact categories. The production of olives contributes to the high environmental load of olive oil, related to cultivation and harvesting phases. The production of aluminum cans is the most significant process for all impact categories, except ozone depletion potential and eutrophication potential, resulting from the high energy demand and the extraction of raw materials. To compare to other sardine products consumed in Portugal, such as frozen and fresh sardines, transport to the wholesaler and store was added. The environmental cost of canned sardines is almost seven times higher per kilogram of edible product. The main action to optimize the environmental performance of canned sardines is therefore to replace the packaging and diminish the olive oil losses as much as possible. Greenhouse gas emissions are reduced by half when plastic packaging is considered rather than aluminum. Frozen and fresh sardines represent much lower environmental impacts than canned sardines. Nevertheless, when other sardine products are not possible, it becomes feasible to use sardines for human consumption, preventing them from being wasted or used suboptimally as feed.  相似文献   

4.
Using algae to simultaneously treat wastewater and produce energy products has potential environmental and economic benefits. This study evaluates the life cycle energy, greenhouse gas (GHG) emissions, eutrophication potential, and cost impacts of incorporating an algal turf scrubber (ATS) into a treatment process for dairy wastewater. A life cycle inventory and cost model was developed to simulate an ATS treatment system where harvested algae would be used to generate biogas for process heat and electricity generation. Modeling results show that using an ATS significantly reduces eutrophication impacts by reducing chemical oxygen demand, nitrogen, and phosphorus in the wastewater. With low water recirculation rates through the ATS and high algae productivity, inclusion of the ATS results in net energy displacement and a reduction of GHG emissions compared to a system with no ATS. However, if high water recirculation rates are used or if algae biosolids from the digester are dried, the system results in a net increase in energy consumption and GHG emissions. The life cycle treatment cost was estimated to be $1.42 USD per cubic meter of treated wastewater. At this cost, using an ATS would only be cost effective for dairies if they received monetary credits for improved water quality on the order of $3.83 per kilogram of nitrogen and $9.57 per kilogram of phosphorus through, for example, nutrient trading programs.  相似文献   

5.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

6.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

7.
The multifunctional character of resource recovery in waste management systems is commonly addressed through system expansion/substitution in life cycle assessment (LCA). Avoided burdens credited based on expected displacement of other product systems can dominate the overall results, making the underlying assumptions particularly important for the interpretation and recommendations. Substitution modeling, however, is often poorly motivated or inadequately described, which limits the utility and comparability of such LCA studies. The aim of this study is therefore to provide a structure for the systematic reporting of information and assumptions expected to contribute to the substitution potential in order to make substitution modeling and the results thereof more transparent and interpretable. We propose a reporting framework that can also support the systematic estimation of substitution potentials related to resource recovery. Key components of the framework include waste‐specific (physical) resource potential, recovery efficiency, and displacement rate. End‐use–specific displacement rates can be derived as the product of the relative functionality (substitutability) of the recovered resources compared to potentially displaced products and the expected change in consumption of competing products. Substitutability can be determined based on technical functionality and can include additional constraints. The case of anaerobic digestion of organic household waste illustrates its application. The proposed framework enables well‐motivated substitution potentials to be accounted for, regardless of the chosen approach, and improves the reproducibility of comparative LCA studies of resource recovery.  相似文献   

8.
Continuous population growth is causing increased water contamination. Uneven distribution of water resources and periodic droughts have forced governments to seek new water sources: reclaimed and desalinated water. Wastewater recovery is a tool for better management of the water resources that are diverted from the natural water cycle to the anthropic one. The main objective of this work is to assess the stages of operation of a Spanish Mediterranean wastewater treatment plant to identify the stages with the highest environmental impact, to establish the environmental loads associated with wastewater reuse, and to evaluate alternative final destinations for wastewater. Tertiary treatment does not represent a significant increment in the impact of the total treatment at the plant. The impact of reclaiming 1 cubic meter (m3) of wastewater represents 0.16 kilograms of carbon dioxide per cubic meter (kg CO2/m3), compared to 0.83 kg CO2/m3 associated with basic wastewater treatment (primary, secondary, and sludge treatment). From a comparison of the alternatives for wastewater final destination, we observe that replacing potable water means a freshwater savings of 1.1 m3, whereas replacing desalinated water means important energy savings, reflected in all of the indicators. To ensure the availability of potable water to all of the population—especially in areas where water is scarce—governments should promote reusing wastewater under safe conditions as much as possible.  相似文献   

9.
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

10.
This article presents a case study in a Nigerian firm of how waste costing can be applied to pollution prevention (P2) investment decisions. This case is informed by the priority accorded to P2 as a preferred alternative to end‐of‐pipe pollution control. It demonstrates that even in the absence of effective regulations in a developing country, cost accounting can spur P2 decisions by management through the system of waste cost allocation. The case used standard cost data from the Wonder Beauty Care Company and applied the activity‐based costing (ABC) system to waste cost allocation using waste cost drivers, which yielded another genre of waste costs—waste‐induced overhead. Subsequently, the waste‐induced overhead was applied to P2 investment analysis. This analysis indicated that the P2 investment alternative that incorporates the waste‐induced overhead produced a preferred alternative choice. The case further revealed that managers’ knowledge of waste costs in a Nigerian firm may influence their P2 decisions. The case illustrates practically a possible dual advantage of an improved costing system for Nigerian firms—cost reduction and cleaner production.  相似文献   

11.
Background, Aim and Scope Sustainability is a well recognised goal which is difficult to manage due to its complexity. As part of a series of sustainability management tools, a Product Sustainability Index (PSI) is translating the sustainability aspects to the organization of vehicle product development of Ford of Europe, thus allocating ownership and responsibility to that function. PSI is limiting the scope to those key environmental, social and economic characteristics of passenger vehicles that are controllable by the product development organisation. Materials and Methods: The PSI considers environmental, economic and social aspects based on externally reviewed life cycle environmental and cost aspects (Life Cycle Assessment, Cost of ownership / Life Cycle Costing), externally certified aspects (allergy-tested interior) and related aspects as sustainable materials, safety, mobility capability and noise. After the kick-off of their product development in 2002, the new Ford S-MAX and Ford Galaxy are serving as a pilot for this tool. These products are launched in Europe in 2006. The tracking of PSI performance has been done by engineers of the Vehicle Integration department within the product development organization. The method has been translated in an easy spreadsheet tool. Engineers have been trained within one hour trainings. The application of PSI by vehicle integration followed the principle to reduce the need for any incremental time or additional data to a minimum. PSI is adopted to the existing decision-making process. End of 2005, an internal expert conducted a Life Cycle Assessment and Life Cycle Costing (LCC) study for verification purposes using commercial software. This study and the PSI have been scrutinized by an external review panel according to ISO14040 and, by taking into consideration the on-going SETAC, work in the field of LCC. Results: The results of the Life Cycle based indicators of PSI as calculated by non-experts are fully in line with those of the more detailed expert study. The difference is below 2%. The new Ford Galaxy and Ford S-MAX shows significantly improved performance regarding the life cycle air quality, use of sustainable materials, restricted substances and safety compared to the previous model Galaxy. The affordability (Life Cycle Cost of Ownership) has also been improved when looking at the same engine types. Looking at gasoline versus diesel options, the detailed study shows under what conditions the diesel options are environmentally preferable and less costly (mileage, fuel prices, etc.). Discussion: The robustness of results has been verified in various ways. Based also on Sensitivity and Monte-Carlo Analysis, case study-specific requirements have been deduced defining criteria for a significant environmental improvement between the various vehicles. Only if the differences of LCIA results between two vehicles are larger than a certain threshold are the above-mentioned results robust. Conclusions: In general terms, an approach has been implemented and externally reviewed that allows non-experts to manage key environmental, social and economic aspects in the product development, also on a vehicle level. This allows mainstream functions to take ownership of sustainability and assigns accountability to those who can really decide on changes affecting the sustainability performance. In the case of Ford S-MAX and Galaxy, indicators from all three dimensions of sustainability (environment, social and economic) have been improved compared to the old Ford Galaxy. Recommendations and Perspectives: Based on this positive experience, it is recommended to make, in large or multinational organizations, the core business functions directly responsible and accountable for managing their own part of environmental, social and economic aspects of sustainability. Staff functions should be limited to starting the process with methodological and training support and making sure that the contributions of the different main functions fit together.  相似文献   

12.
Collection and treatment of waste from electrical and electronic equipment (WEEE) is regulated in the European Union by the WEEE Directive. Producers are responsible for take‐back and recycling of discarded equipment. Valuable materials are, however, at risk of “getting lost” in current processes. Thus, strategies to minimize losses are sought after. The material hygiene (MH) concept was introduced to address this issue. Structural features, which are important for the outcome of reuse, recovery, and recycling, were investigated in an earlier field study of discarded dishwashers. It was proposed that a prestep, manual removal of copper prior to shredding could increase the purity of recovered material fractions. This article builds on the field study and theoretical reasoning underlying the MH concept. Dishwashers are assumed to be designed for disassembly when the prestep is introduced. A limited life cycle assessment was performed to determine whether the proposed prestep may be environmentally beneficial in a life cycle perspective. Two alternatives were analyzed: Case 1: the current shredding process. Case 2: prestep removal of copper before shredding. Targeted disassembly prior to shredding may reduce the abiotic depletion and global warming potential in a life cycle perspective. The prestep results in increased copper recovery, but, more important, copper contamination of the recovered steel fractions is reduced. The results also highlight the importance of minimizing energy consumption in all process stages.  相似文献   

13.
Life cycle assessment practitioners struggle to accurately allocate environmental burdens of metals recycling, including the temporal dimension of environmental impacts. We analyze four approaches for calculating aluminum greenhouse gas emissions: the recycled content (RC) or cut‐off approach, which assumes that demand for recycled content displaces primary production; end‐of‐life recycling (EOLR), which assumes that postuse recycling displaces primary production; market‐based (MB) approaches, which estimate changes in supply and demand using price elasticities; and value‐corrected substitution (VCS), which allocates impact based on price differences between primary and recycled material. Our analysis suggests that applications of the VCS approach do not adequately account for the changing scrap to virgin material price ratio over time, whereas MB approaches do not address stock accumulation and depletion. The EOLR and RC approaches were analyzed using two case studies: U.S. aluminum beverage cans and vehicle engine blocks. These approaches produced similar results for beverage cans, which have a closed material loop system and a short product life. With longer product lifetimes, as noted with the engine blocks, the magnitude and timing of the emissions differs greatly between the RC and EOLR approaches. The EOLR approach indicates increased impacts at the time of production, offset by negative impacts in future years, whereas the RC approach assumes benefits to increased recycled content at the time of production. For vehicle engine blocks, emissions using EOLR are 140% higher than with RC. Results are highly sensitive to recycled content and future recycling rates, and the choice of allocation methods can have significant implications for life cycle studies.  相似文献   

14.
No life cycle assessment (LCA) of artisanal and small‐scale mining activities (A&Sma) has been identified as of today, and there are limited studies about large‐scale mining and alluvial mining. The A&Sma are relevant economic sectors in countries with large reserves of mineral resources. Gold is the most representative metal mined with these practices and is used not only in jewelry but also in several electronics appliances. South America accounted for 17% of the total worldwide gold extraction in 2005; A&Sma occurred mostly in Colombia, Peru, and Brazil. The aim of this study is to estimate environmental indicators using methodologies for life cycle inventories (LCIs) in one of the two largest producers of gold through A&Sma in South America, Peru, and to discuss possible indicators for A&Sma in South America. Different functional units were used for each case study, as gold with different concentrations was produced and it was not possible to collect data for downstream processes for both bases. The product systems start in the mining and end with the gold production. Data were collected in two mining sites and, later on, related to the functional units. The results showed the amount of energy and water consumed as well as mercury used and released, carbon dioxide (CO2) emissions, and solid wastes for each type of gold produced.  相似文献   

15.
Many authors have agreed on the interest of considering environmental concerns in the early stages of product development. However, most eco‐design tools are based on life cycle assessment principles and require a model to give information about the product's environmental performance. This modeling can have negative effects on team performance and on the potential for innovation, not to mention on the project's duration. Additionally, the model requires information that is not available in the early design stages. This article analyzes the potential of inferring conclusions about the life cycle stages with the highest impact by using similar products. From a database of previous products, environmental profile estimations are carried out, that is, the assessments of the contribution of each life cycle stage to the total impact and the variability of this measure. It is then possible to discard—or ensure consideration of—life cycle stages. Furthermore, the level of the conclusions is assessed on a five‐point scale. The proposed approach is applied to four case studies with different levels of abstraction and the relevance of the conclusions is assessed. The article resolves the problems regarding potential for estimating the distribution of the environmental impacts along the life cycle.  相似文献   

16.
Determining the relevance and importance of a technosphere process or a cluster of processes in relation to the rest of the industrial network can provide insights into the sustainability of supply chains: those that need to be optimized or controlled/safeguarded. Network analysis (NA) can offer a broad framework of indicators to tackle this problem. In this article, we present a detailed analysis of a life cycle inventory (LCI) model from an NA perspective. Specifically, the network is represented as a directed graph and the “emergy” numeraire is used as the weight associated with the arcs of the network. The case study of a technological system for drinking water production is presented. We investigate the topological and structural characteristics of the network representation of this system and compare properties of its weighted and unweighted network, as well as the importance of nodes (i.e., life cycle unit processes). By identifying a number of advantages and limitations linked to the modeling complexity of such emergy‐LCI networks, we classify the LCI technosphere network of our case study as a complex network belonging to the scale‐free network family. The salient feature of this network family is represented by the presence of “hubs”: nodes that connect with many other nodes. Hub failures may imply relevant changes, decreases, or even breaks in the connectedness with other smaller hubs and nodes of the network. Hence, by identifying node centralities, we can rank and interpret the relevance of each node for its special role in the life cycle network.  相似文献   

17.
This article presents an approach to estimate missing elements in hybrid life cycle inventories. Its development is motivated by a desire to rationalize inventory compilation while maintaining the quality of the data. The approach builds on a hybrid framework, that is, a combination of process‐ and input–output‐based life cycle assessment (LCA) methodology. The application of Leontief's price model is central in the proposed procedure. Through the application of this approach, an inventory with no cutoff with respect to costs can be obtained. The formal framework is presented and discussed. A numerical example is provided in Supplementary Appendix S1 on the Web.  相似文献   

18.
The cradle‐to‐cradle (C2C) concept has emerged as an alternative to the more established eco‐efficiency concept based on life cycle assessment (LCA). The two concepts differ fundamentally in that eco‐efficiency aims to reduce the negative environmental footprint of human activities while C2C attempts to increase the positive footprint. This article discusses the strengths and weaknesses of each concept and suggests how they may learn from each other. The eco‐efficiency concept involves no long‐term vision or strategy, the links between resource consumption and waste emissions are not well related to the sustainability state, and increases in eco‐efficiency may lead to increases in consumption levels and hence overall impact. The C2C concept's disregard for energy efficiency means that many current C2C products will likely not perform well in an LCA. Inherent drawbacks are restrictions on the development of new materials posed by the ambition of continuous loop recycling, the perception that human interactions with nature can benefit all parts of all ecosystems, and the hinted compatibility with continued economic growth. Practitioners of eco‐efficiency can benefit from the visions of C2C to avoid a narrow‐minded focus on the eco‐efficiency of products that are inherently unsustainable. Moreover, resource efficiency and positive environmental effects could be included more strongly in LCA. Practitioners of C2C on the other hand should recognize the value of LCA in addressing trade‐offs between resource conservation and energy use. Also, when designing a “healthy emission” it should be recognized that it will often have an adverse effect on parts of the exposed ecosystem.  相似文献   

19.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

20.
This work contributes to the development of a dynamic life cycle assessment (DLCA) methodology by providing a methodological framework to link a dynamic system modeling method with a time‐dependent impact assessment method. This three‐step methodology starts by modeling systems where flows are described by temporal distributions. Then, a temporally differentiated life cycle inventory (TDLCI) is calculated to present the environmental exchanges through time. Finally, time‐dependent characterization factors are applied to the TDLCI to evaluate climate‐change impacts through time. The implementation of this new framework is illustrated by comparing systems producing domestic hot water (DHW) over an 80‐year period. Electricity is used to heat water in the first system, whereas the second system uses a combination of solar energy and gas to heat an equivalent amount of DHW at the same temperature. This comparison shows that using a different temporal precision (i.e., monthly vs. annual) to describe process flows can reverse conclusions regarding which case has the best environmental performance. Results also show that considering the timing of greenhouse gas (GHG) emissions reduces the absolute values of carbon footprint in the short‐term when compared with results from the static life cycle assessment. This pragmatic framework for the implementation of time in DLCA studies is proposed to help in the development of the methodology. It is not yet a fully operational scheme, and efforts are still required before DLCA can become state of practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号