首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Under the European Union (EU) Waste Electrical and Electronics Equipment (WEEE) Directive, producers are responsible for financing the recycling of their products at end of life. A key intention of such extended producer responsibility (EPR) legislation is to provide economic incentives for producers to develop products that are easier to treat and recycle at end of life. Recent research has shown, however, that the implementation of EPR for WEEE has so far failed in this respect. Current WEEE systems calculate their prices according to simple mass‐based allocation of costs to producers, based on broad collection categories containing a mixture of different product types and brands. This article outlines two alternative approaches, which instead calculate charges for products sold by producers by classifying them according to their eventual end‐of‐life treatment requirements and cost. Worked examples indicate that these methods provide both effective and efficient frameworks for financing WEEE, potentially delivering financial incentives to producers substantial enough to affect their potential profitability and, as a likely consequence, the decisions relating to the design of their products. In particular they fulfill three important criteria required by the WEEE Directive: they can financially reward improved design, allocate costs of historic waste proportionately (on the basis of tonnes of new products sold), and provide sufficient financial guarantees against future waste costs and liabilities. They are also relatively practical for implementation because they are based solely on cost allocation and financing. Further research and investigation would be worthwhile to test and verify this approach using real‐world data and under various scenarios.  相似文献   

2.
Extended producer responsibility (EPR), which assigns significant responsibility to producers to take back their end‐of‐life products to create incentives for redesign of products with lower life cycle environmental impacts, has come to a crossroad facing a trade‐off between the original innovation‐oriented regime design and the cost‐efficiency challenges in practice. This is particularly true in its implementation in non‐Organization for Economic Co‐operation and Development (OECD) countries as they are trying to transplant the “best practices” from OECD countries, for there is increasing skepticism as to whether EPR is suitable for developing countries at all. As an important producer of electronic products and destination of electronic waste (e‐waste) flows in the world, China has been expected to play a vital role in the evolution of global governance based on the idea of EPR, either to create new ways for producers to perform their end‐of‐life strategies, or to reshape the mode of production and consumption with its fast‐growing market. However, the establishment of EPR in China has been long and full of difficulties. This article reviews the status and trends in the establishment of an EPR system for waste electrical and electronic equipment (WEEE) management in China. We use the framework of a multilevel perspective of transition theory in our analysis to characterize the complex interactions among various agents in the evolution of the Chinese system from initial innovation‐oriented design to the current efficiency‐oriented version. An ongoing research framework for evaluation of the EPR program in China is outlined as the research agenda in coming years.  相似文献   

3.
In this article, we analyze the Minnesota Electronics Recycling Act to explore the benefits and potential drawbacks of a market‐based extended producer responsibility (EPR) legislation implementation with operational flexibility for manufacturers. Based on publicly available reports and stakeholder interviews, we find that the Minnesota Act attains two key goals of market‐based EPR (i.e., higher cost efficiencies and substantial landfill diversion); however, this may come at the expense of selective collection and recycling, an increased burden on local governments, and a loss of balance in contractual power between stakeholders. We observe that these concerns arise because of specific flexibility provisions afforded to manufacturers that allow them to operationalize their EPR compliance with a cost‐efficiency focus. Thus, we conclude that EPR goals must be carefully translated into operating rules in order to achieve goals while avoiding unintended consequences.  相似文献   

4.
The goal of this article is to contribute to the understanding of how the multiple, and sometimes conflicting, stakeholder perspectives and prevailing conditions (economic, geographic, etc.) in the implementation locality shape extended producer responsibility (EPR) “on the ground.” We provide an in‐depth examination of the implementation dimension of EPR in a specific case study by examining concrete activities at the operational front of the collection and recycling system, and probing the varying stakeholder preferences that have driven a specific system to its status quo. To this end, we conduct a detailed case study of the Washington State EPR implementation for electronic waste. We provide an overview of various stakeholder perspectives and their implications for the attainment of EPR policy objectives in practice. These findings shed light on the intrinsic complexity of EPR implementation. We conclude with recommendations on how to achieve effective and efficient EPR implementation, including improving design incentives, incorporating reuse and refurbishing, expanding product scope, managing downstream material flows, and promoting operational efficiency via fair cost allocation design.  相似文献   

5.
Business‐to‐business (B2B) electronics account for a significant volume of the electrical and electronic equipment (EEE) put on the market. Very little B2B waste electrical and electronic equipment (WEEE) is reported as collected in the European Union (EU) in compliance with the WEEE Directive, which uses the policy principle of extended producer responsibility (EPR) to ensure that WEEE is managed correctly. This presents a barrier to parties looking for access to the waste. Company practice dictates the channels into which B2B WEEE flows following primary use. This article presents a study that engaged with company actors directly to get a better understanding of business information technology (IT) EEE asset management. Data were collected to determine the barriers current practice could present to the collection of B2B IT EEE at end of life and the implications of these for the development of policies and strategies for EPR. A questionnaire was developed and data were gathered from organizations in three EU countries—the United Kingdom, Germany, and France—stratified by size. Some notable findings were that there are several routes by which end‐of‐life B2B WEEE can flow. The recycling and refurbishment of B2B IT units at end of use was shown to be commonplace, but it is likely that these units enter streams where they are not reported. The actors disposing of their units did not have information on the management or disposition of these streams. It is concluded that to achieve the goals of EPR for B2B IT WEEE, the networks and the operational practices of these streams need to be better understood when developing strategies and policies.  相似文献   

6.
Different perceptions of the concept of extended producer responsibility and product stewardship (EPR/PS) have tended to lead to prolonged policy disputes and have likely affected the design of EPR/PS policies. We therefore surveyed stakeholders’ perceptions of the concept of EPR/PS, including its aims, application, and rationales, and analyzed 376 responses with regression analysis and cluster analysis. The results clearly demonstrated the diversity in stakeholders’ perceptions and identified/confirmed several patterns between stakeholders’ perceptions and attributes. Concerning aims, our analysis showed that stakeholders from middle‐/low‐income countries placed more importance on proper treatment and waste reduction in EPR/PS policy, while those from Europe, North America, Japan, and the rest of Asia had different perceptions on seven aims of EPR/PS, especially for increasing collection and shifting responsibility to producers, and paid varying attention to upstream and downstream improvement (e.g., better product design and recycling, respectively). Our analysis also confirmed that respondents perceiving lack of capability of local governments regarding waste management advocated EPR/PS more and respondents positive about information acquisition put more importance on physical responsibility. The largest contributing variables to the perception of EPR/PS were 14 specific EPR/PS mechanisms/issues, suggesting that discussion about specific mechanisms of EPR/PS policy is a key if common and better understandings of the EPR/PS concept are to develop. The dominant rationale of EPR/PS agreed upon by the respondents was producers’ capability, but the concept of beneficiary bears was also supported by 58% of respondents, especially by national governments and North Americans. Finally, implications of the results for EPR/PS policy development were discussed.  相似文献   

7.
Extended producer responsibility (EPR) regulations are now in effect in 27 European Union member states and are applicable to up to 100 million tonnes of waste packaging, batteries, automobiles, and electrical and electronic products annually. This article investigates the implementation of EPR through a case study of European Recycling Platform (ERP) UK Ltd., the UK arm of one of the largest producer responsibility organizations (PROs) in Europe, recycling more than 1.5 million tonnes of waste electrical and electronic equipment to date. Previous research is extremely limited on the detailed operations of PROs. This case is presented as an example illustrating typical operational challenges PROs face in implementing EPR, such as how PROs gain an understanding of the waste management infrastructure and legislation in each country, collect sufficient volumes of waste using cost‐effective arrangements, and maintain uninterrupted collection, treatment, and recycling services. The case study provides new insights and context on the practical implementation of EPR regulations relevant for both policy makers and researchers.  相似文献   

8.
Human activities generate waste, whose amounts tend to increase as the demand for quality of life becomes greater and greater. Hazardous waste (HW) generally makes up only about 1% of all waste in Europe; nevertheless, it presents a serious risk to the ecosystem and human health unless managed and treated safely. Several countries of the European Union (EU) report treatment rates of HW in excess of 40%; the others export a large portion of it. Notwithstanding that lots of efforts have been made to properly identify, treat, recycle, store, transport, and dispose of HW, this is still a hot topic faced by the governments of many EU countries. The objective of this article is to present a sustainable indicators system to assist in the implementation of a modern and sustainable hazardous waste management (HWM) system in Lithuania. The specific goals are (1) to promote the development of a comprehensive monitoring and enforcement system for timely implementation of HWM rules and other related pieces of legislation and (2) to assist in the implementation of training and awareness of the programs of HWM in support of the development of background data for policy making, including improvement of a hazardous waste identification scheme. The emphasis is put on preventing future discharges of HW by promoting the actions that will result in avoidance, recycling, or recovery of the otherwise hazardous waste.  相似文献   

9.
Lax legislation and increasing demand for electronics are driving relentless growth in electronic waste (e‐waste) in the developing world. To reduce the damage caused by e‐waste and recover value from end‐of‐life (EoL) electronics, original equipment manufacturers (OEMs) have created, over the past decades, programs to divert e‐waste from landfills to recycling and reuse. Although the subject of intense debate, little is known about such initiatives in terms of levels of participation by OEMs or the extent to which they have succeeded in reducing e‐waste in developing economies. To broaden our understanding of these issues, we investigate take‐back initiatives in the thriving market of personal computers (i.e., desktop and laptop computers) in Brazil. Using a multimethod approach (electronic archival data collection and semistructured interviews with manufacturers), we find evidence that large multinational manufacturers are at the forefront of take‐back programs. However, these initiatives in many ways lag behind those implemented in the United States, a more developed market as far as product take‐back is concerned. We find the main reasons for the low levels of participation by OEMs in take‐back programs to be high collection costs, low residual values, and lax, unclear, and conflicting legislation. Moreover, we propose new avenues of research, in light of our scant knowledge of country‐specific, company‐specific, and product‐specific determinants that moderate participation.  相似文献   

10.
Extended producer responsibility (EPR) policies have proven effective at raising consumer awareness, expanding waste collection infrastructure, and shifting costs of end‐of‐life (EOL) management from municipalities to stewardship organizations. Yet, such policies have been less successful in advancing waste management programs that ensure a net environmental benefit. This article analyzes how EPR policies for single‐use batteries in the European Union (EU), Canada, and the United States address the environmental costs and benefits of EOL management. Considering these EPR policies is instructive, because single‐use batteries have high collection costs and are of relatively low economic value for waste processors. Without deliberate planning, the environmental burdens of collecting and recycling such batteries may exceed the benefits. This article considers how EPR policies for single‐use batteries integrate performance requirements such as collection rates, recycling efficiencies, and best available techniques. It argues that for such policies to be effective, they need to be extended to address waste collection practices, the life cycle consequences of EOL management, and the quality of recovered materials. Such strategies are relevant to EPR policies for other products with marginal secondary value, including some textiles, plastics, and other types of electronic waste.  相似文献   

11.
Waste electrical and electronic equipment (WEEE) sheds light on the dimmer side of production and consumption patterns in modern societies. The rapid increase in its quantity and complexity contribute to the challenges it poses to solid waste management systems. Several members of the Organisation for Economic Co‐operation and Development (OECD) have relied on the principle of extended producer responsibility (EPR) to tackle the issue, with varying degrees of success. Several non‐OECD countries, including Thailand, are now developing WEEE programs and are looking for lessons from these first movers. This case study aims to provide an understanding both of this context and of the EPR program for WEEE proposed for Thailand. It finds that EPR mechanisms in general, and the proposed buy‐back system financed by product fees in Thailand in particular, have a strong potential to consolidate WEEE collection for the formal recycling sector by offering end users monetary incentives. On the negative side, this is an expensive combination of policy instruments, and the institutional design of the governmental fund is rigid. The policy proposal also contains no mechanism for product redesign—one of the objectives in the national WEEE strategy. This article suggests that the effectiveness of the policy might benefit from more flexibility at the compliance scheme level, in order to lessen the monopoly of the governmental fund, as well as the introduction of differentiated fees to promote environmentally friendly products.  相似文献   

12.
Life cycle assessment (LCA) is one of the most popular methods of technical‐environmental assessment for informing environmental policies, as, for instance, in municipal solid waste (MSW) management. Because MSW management involves many stakeholders with possibly conflicting interests, the implementation of an LCA‐based policy can, however, be blocked or delayed. A stakeholder assessment of future scenarios helps identify conflicting interests and anticipate barriers of sustainable MSW management systems. This article presents such an approach for Swiss waste glass‐packaging disposal, currently undergoing a policy review. In an online survey, stakeholders (N = 85) were asked to assess disposal scenarios showing different LCA‐based eco‐efficiencies with respect to their desirability and probability of occurrence. Scenarios with higher eco‐efficiency than the current system are more desirable and considered more probable than those with lower eco‐efficiency. A combination of inland recycling and downcycling to foam glass (insulation material) in Switzerland is desired by all stakeholders and is more eco‐efficient than the current system. In contrast, institutions of MSW management, such as national and regional environmental protection agencies, judge a scenario in which nearly all cullet would be recycled in the only Swiss glass‐packaging factory as more desirable than supply and demand stakeholders of waste glass‐packaging. Such a scenario involves a monopsony rejected by many municipalities and scrap traders. Such an assessment procedure can provide vital information guiding the formulation of environmental policies.  相似文献   

13.
Household hazardous wastes (HHWs), the discarded pesticides, solvents, paints, lubricating oil, and similar products common to residences throughout the industrial world, create problems for governments charged with managing solid waste. When disposed of improperly in landfills or incinerators or if dumped illegally, HHW may contribute to soil and water contamination. A most common management tool for HHW is a special collection effort that segregates HHW from normal trash and disposes of it in an approved manner, all at a higher cost to the governmental jurisdiction. The Canadian province of British Columbia (BC) has undertaken a different approach, based on the use of extended producer responsibility (EPR). BC's efforts began in 1992 with adoption of a regulation on used lubricating oil (lube oil). More than 40 million liters (L) of used lube oil have been collected annually through the EPR system established under this regulation. A regulation establishing producer responsibility for postconsumer paints followed in 1994. BC enacted an additional regulation establishing EPR in 1997 for solvents/flammable liquids, domestic pesticides, gasoline, and pharmaceuticals. As a result of the application of EPR to HHW, local government costs for managing HHW and the amount of HHW identified in municipal waste have declined. Although the regulations appear to have mixed success in prompting consumers to avoid products that result in HHW, there are indications that they may be more effective than conventional management efforts. Based on BC's experience with EPR, key factors for successful implementation include maintaining flexibility in program design, creating viable funding alternatives, aggressive enforcement to provide a level playing field, and adopting policies that maximize diversion of HHW from landfills, while minimizing waste generation, setting targets for reuse and recycling, promoting consumer awareness and convenience, involving local government jurisdictions, and monitoring outcomes.  相似文献   

14.
This article presents an integrative approach to calculating the weight of potential biowaste and collected biowaste materials, as the basis for a life‐cycle assessment (LCA) of biowaste management. Biowaste contains kitchen and garden (yard) waste of households. This approach could be used for waste management planning and for the implementation of biowaste schemes. Case studies and examples in the literature are analyzed to model the mass of the flow of biowaste. This article defines relevant operands, presents the main assumptions, and describes the calculation principles. Spatial aspects and the uncertainties related to the inclusion of this aspect are explicitly considered in the calculation of the weight of the potential biowaste. We also present the calculation principles for obtaining the weight of (1) biowaste used in home composting, (2) the organic portion of residual waste, (3) biowaste separately collected by a bring system, and (4) biowaste separately collected by curbside collection (known in some areas as kerbside collection). By choosing the biowaste potential in kilograms per capita year (kg/cap yr) as the functional unit, previously ignored options within the biowaste system could be assessed. For example, widening the system boundaries allows LCA studies to assess the contribution of private and public transport of waste to ecological impact categories. It allows examining the effects of supporting home composting through financial incentives and the introduction of a separate collection system. This study focuses on the comparison of different collection types and on the characteristics of the area under investigation. It also incorporates the behavior of the inhabitants of households and includes a sensitivity analysis of relevant operands. This approach is being included in an LCA assessing biowaste management options.  相似文献   

15.
This article addresses a market‐based management concept for waste electrical and electronic equipment (WEEE) known as the “best‐of‐two‐worlds” approach. The concept is based on the idea that recyclers in developing countries and emerging economies can cooperate with technologically advanced refineries in industrialized countries to facilitate efficient recovery of valuable metals, such as gold and palladium, from e‐waste. The article provides an overview of technical and environmental concerns underlying the concept and sheds light on the political framework, the waste‐related trade issues, and the resource economics that need to be considered for further decision making. Building on this synthesis, I conduct a qualitative assessment of sustainability impacts of the proposed concept by analyzing two scenarios and their associated risks. The analysis suggests that, under certain preconditions, the best‐of‐two‐worlds concept could yield significant improvements in terms of management of hazardous substances, resource efficiency, greenhouse gas emissions, income generation, and investments into social and environmental standards. Generally, two potential implementation scenarios were identified: Whereas under Scenario 1 only WEEE generated within developing countries and emerging economies is managed through the best‐of‐two‐worlds approach, Scenario 2 additionally incorporates WEEE imported from industrialized countries. Although both scenarios can yield a variety of benefits, Scenario 2 might cause a net flow of hazardous substances from industrialized countries into developing countries and emerging economies, thus leading to less beneficial sustainability impacts.  相似文献   

16.
China produces and consumes a large amount of batteries annually, which leads to many waste batteries needing to be recycled. The collection and recycling system of primary, alkaline secondary, and lithium‐ion secondary batteries in China is particularly poor, and waste battery recycling enterprises generally sustain economic losses if they solely use waste batteries as raw materials. Increasing the profits of waste battery recycling systems is a key problem that needs to be considered. This article quantitatively analyzes waste battery generation in China by using annual sales data and probable lifetime distribution of various batteries. The results show that the rapid growth of battery usage has led to an increased generation of waste batteries and the percentage of different types of waste batteries is changing over time. In 2013, the total quantity of all waste batteries in the medium lifetime scenario reached 570 kilotons, of which primary, alkaline secondary, and lithium‐ion secondary waste batteries accounted for approximately 36%, 28%, and 35%, respectively. Based on a real‐world case study of a typical domestic waste battery recycling enterprise in China, material flow analysis and cost‐benefit analysis were conducted to study the development of the recycling process of comingled waste batteries. Through scenario analysis, we conclude that increasing the use of waste batteries as raw materials and the recycling of other materials that are less valuable reduces the profits of the waste battery recycling enterprise. Higher profits can be achieved by adding the production of high value‐added downstream products and government support. At the same time, the essential role of the government in developing a waste battery recycling system was identified. Finally, relevant suggestions are made for improvements in both the government and enterprise sectors.  相似文献   

17.
Under an extended producer responsibility (EPR) system, when a producer delivers a product to the market it must also pay a takeback fee, which is used to cover the costs of end‐of‐life disposal. EPR systems are currently used in Europe and beyond to manage a variety of products, including packaging and used tires. In this article we develop an input‐output (IO) model that is able to assess the impacts of an EPR system, and is based on the waste IO (WIO) model. The WIO model is itself a hybrid‐unit model extension of the Leontief model that is able to capture the substitution effect between recycled/recovered material/energy from waste treatment and their non‐waste cognates. The resulting EPRIO model, besides the conventional direct and indirect effects of the Leontief model and the substitution effects of the WIO model, is able to capture the opportunity costs of financing the EPR system, and additionally requires the specification of an alternative waste management policy, with its own opportunity costs. The impact of an EPR policy is thus the difference between the impacts of the reference EPR and the alternative waste treament policies. The resulting model is illustrated with a simple example of a used tire management EPR system.  相似文献   

18.
In recent years, electronic waste (e‐waste) such as old cable wires, fans, circuit boards, etc., can be often seen in large piles of leftover in dumping yards. Employing these e‐waste sources for energy storage devices not only increases the economic value but also decreases the reliance on fossil fuels. In this context, waste cable wires are utilized to obtain precious copper (Cu) fibers and used as a cost‐effective current collector for the fabrication of fiber‐based hybrid supercapacitor (FHSC). With the braided Cu fibers, forest‐like nickel oxide nanosheet grafted carbon nanotube coupled copper oxide nanowire arrays (NiO NSs@CNTs@CuO NWAs/Cu fibers) are designed via simple wet‐chemical approaches. As a battery‐type material, the forest‐like NiO NSs@CNTs@CuO NWAs/Cu fiber electrode shows superior electrochemical properties including high specific capacity (230.48 mA h g?1) and cycling stability (82.72%) in aqueous alkaline electrolyte. Moreover, a solid‐state FHSC is also fabricated using forest‐like NiO NSs@CNTs@CuO NWAs/Cu fibers as a positive electrode and activated carbon coated carbon fibers as a negative electrode with a gel electrolyte, which also shows a higher energy and power densities of 26.32 W h kg?1 and 1218.33 W kg?1, respectively. The flexible FHSC is further employed as an energy source for various electronic gadgets, demonstrating its suitability for wearable applications.  相似文献   

19.
Extended producer responsibility (EPR) legislation, making producers responsible for financing and organizing take-back and recycling of waste batteries, packaging, end-of-life vehicles (ELVs), and waste electrical and electronic equipment (WEEE), has been or is currently in the process of being implemented in 29 different countries in Europe following introduction of European Union directives. This article reviews the potential impacts of EPR for waste batteries, packaging, and WEEE on producers distributing products in Europe through a case study of Sony Computer Entertainment Europe (SCEE)—responsible for marketing and distribution of PlayStation products.
There are presently more than 250 producer responsibility organizations (PROs) established to meet EPR obligations in Europe, which contrasts to the single national recycling schemes founded in the late 1990s. SCEE estimates it avoided anetcostof €408,000 in 2005 by introducing competitive review of PRO services (against a total net take-back cost of €401,000).To meet increasingly extensive compliance obligations, SCEE has initiated new activities, with considerable implications for the company's legal, sales data administration, procurement, accounting, and product and packaging approval practices.
Considering the ultimate aim of EPR to establish economic incentives for improved product design, several significant political and practical obstacles are described from SCEE's case and industry situation. Although the principle of EPR is indeed interesting, its practical application in Europe may require refinement. Producers, given adequate support by policy makers, still have opportunities to develop new processes under the WEEE Directive to facilitate design for the environment.  相似文献   

20.
Quantifying differences in resource use and waste generation between individual households and exploring the reasons for the variations observed implies the need for disaggregated data on household activities and related physical flows. The collection of disaggregated data for water use, gas use, electricity use, and mobility has been reported in the literature and is normally achieved through sensors and computational algorithms. This study focuses on collecting disaggregated data for goods consumption and related waste generation at the level of individual households. To this end, two data collection approaches were devised and evaluated: (1) triangulating shopping receipt analysis and waste component analysis and (2) tracking goods consumption and waste generation using a smartphone. A case study on two households demonstrated that it is possible to collect quantitative data on goods consumption and related waste generation on a per unit basis for individual households. The study suggested that the type of data collected can be relevant in a number of different research contexts: eco‐feedback; user‐centered research; living‐lab research; and life cycle impacts of household consumption. The approaches presented in this study are most applicable in the context of user‐centered or living‐lab research. For the other contexts, alternative data sources (e.g., retailers and producers) may be better suited to data collection on larger samples, though at a lesser level of detail, compared with the two data collection approaches devised and evaluated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号