首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By adopting a monoclonal antibody approach, we have identified a novel splicing factor of 35 kDa which we have termed 9G8. The isolation and characterization of cDNA clones indicate that 9G8 is a novel member of the serine/arginine (SR) splicing factor family because it includes an N-terminal RNA binding domain (RBD) and a C-terminal SR domain. The RNA binding domain of 9G8 is highly homologous to those of the SRp20 and RBP1 factors (79-71% identity), but the homology is less pronounced in the cases of SF2/ASF and SC35/PR264 (45-37% identity). Compared with the other SR splicing factors, 9G8 presents some specific sequence features because it contains an RRSRSXSX consensus sequence repeated six times in the SR domain, and a CCHC motif in its median region, similar to the zinc knuckle found in the SLU7 splicing factor in yeast. Complete immunodepletion of 9G8 from a nuclear extract, which is accompanied by a substantial depletion of other SR factors, results in a loss of splicing activity. We show that a recombinant 9G8 protein, expressed using a baculovirus vector and excluding other SR factors, rescues the splicing activity of a 9G8-depleted nuclear extract and an S100 cytoplasmic fraction. This indicates that 9G8 plays a crucial role in splicing, similar to that of the other SR splicing factors. This similarity was confirmed by the fact that purified human SC35 also rescues the 9G8-depleted extract. The identification of the 9G8 factor enlarges the essential family of SR splicing factors, whose members have also been proposed to play key roles in alternative splicing.  相似文献   

2.
An important group of splicing factors involved in constitutive and alternative splicing contain an arginine/serine (RS)-rich domain. We have previously demonstrated the existence of such factors in plants and report now on a new family of splicing factors (termed the RSZ family) from Arabidopsis thaliana which additionally harbor a Zn knuckle motif similar to the human splicing factor 9G8. Although only around 20 kDa in size, members of this family possess a multi-domain structure. In addition to the N-terminal RNA recognition motif (RRM), a Zn finger motif of the CCHC-type is inserted in an RGG-rich region; all three motifs are known to contribute to RNA binding. The C-terminal domain has a characteristic repeated structure which is very arginine-rich and centered around an SP dipeptide. One member of this family, atRSZp22, has been shown to be a phosphoprotein with properties similar to SR proteins. Furthermore, atRSZp22 was able to complement efficiently splicing deficient mammalian S100 as well as h9G8-depleted extracts. RNA binding assays to selected RNA sequences indicate an RNA binding specificity similar to the human splicing factors 9G8 and SRp20. Taken together, these result show that atRSZp22 is a true plant splicing factor which combines structural and functional features of both h9G8 and hSRp20.  相似文献   

3.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

4.
The SR protein SRp38 is a general splicing repressor that is activated by dephosphorylation during mitosis and in response to heat shock. Here we describe experiments that provide insights into the mechanism by which SRp38 functions in splicing repression. We first show that SRp38 redistributes and colocalizes with snRNPs, but not with a typical SR protein, SC35, during mitosis and following heat shock. Supporting the functional significance of this association, a micrococcal nuclease-sensitive component, i.e., an snRNP(s), completely rescued heat shock-induced splicing repression in vitro, and purified U1 snRNP did so partially. SRp38 contains an N-terminal RNA binding domain (RBD) and a C-terminal RS domain composed of two subdomains (RS1 and RS2 domains). Unexpectedly, an RS1 deletion mutant derivative specifically inhibited the second step of splicing, while an RS2 deletion mutant retained significant dephosphorylation-dependent repression activity. Using chimeric SRp38/SC35 proteins, we show that SC35-RBD/SRp38-RS can function as a general splicing activator and that the dephosphorylated version can act as a strong splicing repressor. SRp38-RBD/SC35-RS, however, was essentially inactive in these assays. Together, our results help to define the unusual features of SRp38 that distinguish it from other SR proteins.  相似文献   

5.
6.
M Golovkin  A S Reddy 《The Plant cell》1998,10(10):1637-1648
The U1 small nuclear ribonucleoprotein particle (U1 snRNP) 70K protein (U1-70K), one of the three U1 snRNP-specific proteins, is implicated in basic and alternative splicing of nuclear pre-mRNAs. We have used the Arabidopsis U1-70K in the yeast two-hybrid system to isolate cDNAs encoding proteins that interact with it. This screening has resulted in the isolation of two novel plant serine/arginine-rich (SR) proteins, SRZ-22 and SRZ-21 (SRZ proteins). Neither the N-terminal region nor the arginine-rich C-terminal region of U1-70K alone interact with the SRZ proteins. The interaction of U1-70K with the SRZ proteins is confirmed further in vitro using a blot overlay assay. The plant SRZ proteins are highly similar to each other and contain conserved modular domains unique to different groups of splicing factors in the SR family of proteins. SRZ proteins are similar to human 9G8 splicing factor because they contain a zinc knuckle, precipitate with 65% ammonium sulfate, and cross-react with the 9G8 monoclonal antibody. However, unlike the 9G8 splicing factor, SRZ proteins contain a glycine hinge, a unique feature in other splicing factors (SC35 and ASF/SF2), located between the RNA binding domain and the zinc knuckle. SRZ-22 and SRZ-21 are encoded by two distinct genes and are expressed in all tissues tested with varied levels of expression. Our results suggest that the plant SRZ proteins represent a new group of SR proteins. The interaction of plant U1-70K with the SRZ proteins may account for some differences in pre-mRNA splicing between plants and animals.  相似文献   

7.
8.
9.
We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.  相似文献   

10.
SRrp86 is an 86-kDa member of the SR protein superfamily that is unique in that it can alter splice site selection by regulating the activity of other SR proteins. To study the function of SRrp86, inducible cell lines were created in which the concentration of SRrp86 could be varied and its effects on alternative splicing determined. Here, we show that SRrp86 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. These effects are apparently mediated through direct protein-protein interaction, as pull-down assays showed that SRrp86 interacts with both SRp20 and SC35. Consistent with the hypothesis that relatively modest changes in the concentration or activity of one or more splicing factors can combinatorially regulate overall splicing, protein expression patterns of SRrp86, SRp20, and SC35 reveal that each tissue maintains a unique ratio of these factors. Regulation of SR protein activity, coupled with regulated protein expression, suggest that SRrp86 may play a crucial role in determining tissue specific patterns of alternative splicing.  相似文献   

11.
Purine-rich exonic splicing enhancers (ESEs) have been identified in many alternatively spliced exons. Alternative splicing of several ESE-containing exons has been shown to depend on subsets of the SR protein family of pre-mRNA splicing factors. In this report, we show that purified SR protein family member SRp55 by itself binds a 30-nt ESE-containing exon, the alternatively spliced exon 5 of avian cardiac troponin T. We show that purified SRp55 binds specifically to this RNA sequence with an apparent Kd of 60 nM as assayed by gel mobility retardation experiments. Mutations in the exon 5 sequence that increase or decrease exon 5 inclusion in vivo and in vitro have correspondingly different affinities for SRp55 in our assays. The exon 5 sequence contains two purine-rich motifs, common to many ESEs, and both are required for SRp55 binding. Hill plot analysis of binding titration reactions indicates that there is a cooperative binding of at least two SRp55 proteins to the exon sequence. Chemical modification interference studies using kethoxal show that SRp55 binding to exon 5 requires the N1 and/or the N2 of almost every G residue in the exon. Dimethylsulfate modification interference studies indicate that none of the N1 positions of A residues in the exon are important for binding. We postulate that SRp55 may recognize both primary sequence and RNA secondary structural elements within pre-mRNA.  相似文献   

12.
13.
14.
Wu Y  Zhang Y  Zhang J 《Genomics》2005,86(3):329-336
Ab initio prediction of functional exon splicing enhancer (ESE) elements based on RNA sequences present a challenge in the evaluation of the functional impacts of human genetic polymorphisms on splicing. To better understand the behavior of ESEs, we studied their distribution in human exons and introns for four known SR protein-binding motifs: SF2/SAF, SC35, SRp40, and SRp55. ESEs are enriched in regions in exons that are close to the splice sites, especially in the region 80 to 120 bases away from the ends of splice acceptor sites. Significant enrichment of ESEs is associated with weak splice acceptor sites but not weak donor sites. ESE density decreases at the 3 ends of long exons. ESEs are also enriched in introns with weak donor or acceptor sites. These characteristics of ESEs may help to predict functional ESE sites in RNA sequences.  相似文献   

15.
Two splice variants are derived from the caspase-9 gene, proapoptotic caspase-9a and antiapoptotic caspase-9b, by either the inclusion or exclusion of an exon 3, 4, 5, and 6 cassette. Previous studies from our laboratory have shown that the alternative splicing of caspase-9 and the phosphorylation status of SR proteins, a conserved family of splicing factors, are regulated by chemotherapy and ceramide via the action of protein phosphatase-1. In this study, a link between ceramide, SR proteins, and the alternative splicing of caspase-9 was established. The downregulation of SRp30a in A549 cells by RNA interference technology resulted in an increase in the caspase-9b splice variant, with a concomitant decrease in the caspase-9a splice variant, thereby significantly decreasing the caspase-9a/9b ratio from 1.67 +/- 0.11 to 0.56 +/- 0.08 (P < 0.005). The specific downregulation of SRp30a also inhibited the ability of exogenous ceramide treatment to induce the inclusion of the exon 3, 4, 5, and 6 cassette. Therefore, we have identified SRp30a as an RNA trans-acting factor that functions as a major regulator of caspase-9 pre-mRNA processing and is required for ceramide to mediate the alternative splicing of caspase-9.  相似文献   

16.
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of SR protein genes with the rice Waxy(b) (Wx(b))-beta-glucuronidase fusion gene. The results showed that plant-specific RSp29 and RSZp23, an SR protein homologous to human 9G8, enhanced splicing and altered the alternative 5' splice sites of Wx(b) intron 1. The resulting splicing pattern was unique to each SR protein; RSp29 stimulated splicing at the distal site, and RSZp23 enhanced splicing at the proximal site. Results of domain-swapping experiments between plant-specific RSp29 and SCL26, which is a homolog of human SC35, showed the importance of RNA recognition motif 1 and the Arg/Ser-rich (RS) domain for the enhancement of splicing efficiencies. Overexpression of plant-specific RSZ36 and SRp33b, a homolog of human ASF/SF2, in transgenic rice changed the alternative splicing patterns of their own pre-mRNAs and those of other SR proteins. These results show that SR proteins play important roles in constitutive and alternative splicing of rice pre-mRNA.  相似文献   

17.
The cardiac troponin T pre-mRNA contains an exonic splicing enhancer that is required for inclusion of the alternative exon 5. Here we show that enhancer activity is exquisitely sensitive to changes in the sequence of a 9-nucleotide motif (GAGGAAGAA) even when its purine content is preserved. A series of mutations that increased or decreased the level of exon inclusion in vivo were used to correlate enhancer strength with RNA-protein interactions in vitro. Analyses involving UV cross-linking and immunoprecipitation indicated that only four (SRp30a, SRp40, SRp55, and SRp75) of six essential splicing factors known as SR proteins bind to the active enhancer RNA. Moreover, purified SRp40 and SRp55 activate splicing of exon 5 when added to a splicing-deficient S100 extract. Purified SRp30b did not stimulate splicing in S100 extracts, which is consistent with its failure to bind the enhancer RNA. In vitro competition of SR protein splicing activity and UV cross-linking demonstrated that the sequence determinants for SR protein binding were precisely coincident with the sequence determinants of enhancer strength. Thus, a subset of SR proteins interacts directly with the exonic enhancer to promote inclusion of a poorly defined alternative exon. Independent regulation of the levels of SR proteins may, therefore, contribute to the developmental regulation of exon inclusion.  相似文献   

18.
The alternative splicing of the last intron (intron D) of bovine growth hormone (bGH) pre-mRNA requires a down-stream exonic splicing enhancer (FP/ESE). The presence of at least one SR protein has been shown to be essential for FP/ESE function and splicing of intron D in in vitro splicing assays. However, in vitro reconstitution of splicing using individual purified SR proteins may not accurately reflect the true complexity of alternative splicing in an intact nucleus, where multiple SR proteins in varying amounts are likely to be available simultaneously. Here, a panel of recombinant baculovirus-expressed SR proteins was produced and tested for the ability to activate FP/ESE-dependent splicing. Individual recombinant SR proteins differed significantly in their activity in promoting intron D splicing. Among the recombinant SR proteins tested, SRp55 was the most active, SC35 showed very little activity, and ASF/SF2 and 9G8 individually had intermediate activity. At least one SR protein (ASF/SF2) bound to the FP/ESE with characteristics of a cooperative interaction. Most interestingly, low concentrations of ASF/SF2 and 9G8 acted synergistically to activate intron D splicing. This was due in part to synergistic binding to the FP/ESE. Splicing of bGH intron D is inherently complex, and is likely controlled by an interaction of the FP/ESE with several trans-acting protein factors acting both independently and cooperatively. This level of complexity may be required for precise control of alternative splicing by an exon sequence, which simultaneously is constrained to maintain translational integrity of the mature mRNA.  相似文献   

19.
SR splicing factors serve as adapter proteins for TAP-dependent mRNA export   总被引:2,自引:0,他引:2  
The only mammalian RNA binding adapter proteins known to partner with TAP/NXF1, the primary receptor for general mRNA export, are members of the REF family. We demonstrate that at least three shuttling SR (serine/arginine-rich) proteins interact with the same domain of TAP/NXF1 that binds REFs. Included are 9G8 and SRp20, previously shown to promote the export of intronless RNAs. A peptide derived from the N terminus of 9G8 inhibits the binding of both REF and SR proteins to TAP/NXF1 in vitro, and this finding argues for competitive interactions. In Xenopus oocytes, the N terminus of 9G8 exhibits a dominant-negative effect on mRNA export from the nucleus, while addition of excess TAP/NXF1 overcomes this inhibition. Thus, multiple adapters including SR proteins most likely cooperate to recruit multiple copies of TAP/NXF1 for efficient mRNA export.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号