首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid ceramidase (N-acylsphingosine amidohydrolase) is the lysosomal enzyme required to hydrolyze the N-acyl linkage between the fatty acid and sphingosine moieties in ceramide. A deficiency of acid ceramidase activity results in the lipid storage disorder, Farber disease. This study reports a new assay method to detect acid ceramidase activity in vitro using Bodipy or lissamine rhodamine-conjugated ceramide (C12 ceramide; dodecanoylsphingosine). Using mouse kidney extracts as the source of acid ceramidase activity, this new method was compared with an assay using radioactive C12 ceramide (N-[(14)C]-dodecanoylsphingosine) as a substrate. The Bodipy C12 ceramide substrate provided data very similar to those of the radioactive substrate, but under the experimental conditions tested, it was significantly more sensitive. Using Bodipy C12 ceramide, femtomole quantities of the product, Bodipy dodecanoic acid, could be detected, providing an accurate measure of acid ceramidase activity as low as 0.1 pmol/mg protein/h. Acid ceramidase activities in skin fibroblasts and EBV-transformed lymphoblasts from Farber disease patients were around 7.8 and 10% of those in normal cells, respectively, confirming the specificity of this new assay method. Based on these results, we suggest that this fluorescence-based, high-performance liquid chromatographic technique is a reliable, rapid, and highly sensitive method to determine acid ceramidase activity, and that it could be useful wherever the in vitro detection of acid ceramidase activity is of importance.  相似文献   

2.
We have previously purified a membrane-bound ceramidase from rat brain and recently cloned the human homologue. We also observed that the same enzyme is able to catalyze the reverse reaction of ceramide synthesis. To obtain insight into the biochemistry of this enzyme, we characterized in this study this reverse activity. Using sphingosine and palmitic acid as substrates, the enzyme exhibited Michaelis-Menten kinetics; however, the enzyme did not utilize palmitoyl-CoA as substrate. Also, the activity was not inhibited in vitro and in cells by fumonisin B1, an inhibitor of the CoA-dependent ceramide synthase. The enzyme showed a narrow pH optimum in the neutral range, and there was very low activity in the alkaline range. Substrate specificity studies were performed, and the enzyme showed the highest activity with d-erythro-sphingosine (Km of 0.16 mol %, and Vmax of 0.3 micromol/min/mg), but d-erythro-dihydrosphingosine and the three unnatural stereoisomers of sphingosine were poor substrates. The specificity for the fatty acid was also studied, and the highest activity was observed for myristic acid with a Km of 1.7 mol % and a Vmax of 0.63 micromol/min/mg. Kinetic studies were performed to investigate the mechanism of the reaction, and Lineweaver-Burk plots indicated a sequential mechanism. Two competitive inhibitors of the two substrates were identified, l-erythro-sphingosine and myristaldehyde, and inhibition studies indicated that the reaction followed a random sequential mechanism. The effect of lipids were also tested. Most of these lipids showed moderate inhibition, whereas the effects of phosphatidic acid and cardiolipin were more potent with total inhibition at around 2.5-5 mol %. Paradoxically, cardiolipin stimulated ceramidase activity. These results define the biochemical characteristics of this reverse activity. The results are discussed in view of a possible regulation of this enzyme by the intracellular pH or by an interaction with cardiolipin and/or phosphatidic acid.  相似文献   

3.
Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is the lipid hydrolase responsible for the degradation of ceramide into sphingosine and free fatty acids within lysosomes. The enzymatic activity was first identified over four decades ago, and is deficient in the inherited lipid storage disorder, Farber Lipogranulomatosis (Farber disease). Importantly, AC not only hydrolyzes ceramide into sphingosine, but also can synthesize ceramide from sphingosine and free fatty acids in vitro and in situ. This "reverse" enzymatic activity occurs at a distinct pH from the hydrolysis ("forward") reaction (6.0 vs. 4.5, respectively), suggesting that the enzyme may have diverse functions within cells dependent on its subcellular location and the local pH. Most information concerning the role of AC in human disease stems from work on Farber disease. This lipid storage disease is caused by mutations in the gene encoding AC, leading to a profound reduction in enzymatic activity. Recent studies have also shown that AC activity is aberrantly expressed in several human cancers, and that the enzyme may be a useful cancer drug target. For example, AC inhibitors have been used to slow the growth of cancer cells, alone or in combination with other established, anti-oncogenic treatments. Aberrant AC activity also has been described in Alzheimer's disease, and overexpression of AC may prevent insulin resistant (Type II) diabetes induced by free fatty acids. Current information concerning the biology of this enzyme and its role in human disease is reviewed within.  相似文献   

4.
Human acid ceramidase catalyzes the last step of lysosomal sphingolipid degradation, the hydrolysis of ceramide to sphingosine and free fatty acid. Inherited deficiency of acid ceramidase activity leads to Farber disease (Farber lipogranulomatosis). In this study, we describe the overexpression and processing of recombinant human acid ceramidase in Sf21 insect cells, its purification and characterization. Infection of Sf21 cells with a recombinant baculovirus encoding acid ceramidase precursor led to a mixture of human acid ceramidase precursor and mature enzyme secreted into the medium. Acidification of the cell culture supernatant to pH 4.2-4.3 triggered the processing of the precursor and resulted in a homogeneous sample of mature human acid ceramidase. The enzyme was purified by chromatography on Concanavalin A Sepharose and Octyl Sepharose yielding 1 mg purified protein per liter of supernatant. The recombinant enzyme was deglycosylated with peptide N-glycosidase F and the main component of the released oligosaccharides was identified as GlcNAc(2)(Fuc)Man(3) by electrospray mass spectrometry. Apparently, five of the six potential N-glycosylation sites were used. Tryptic digestion of the functional recombinant enzyme and matrix-assisted laser desorption/ionization time-of-flight- and electrospray ionization-mass spectrometry analysis of the resulting peptides indicated disulfide bridges between C10-C319, C122-C271 and C367-C371.  相似文献   

5.
Ceramidases catalyze the conversion of ceramide to sphingosine. They are acylaminohydrolases that catalyze the deacylation of the amide-linked saturated fatty acid from ceramide to generate sphingosine. They also catalyze the reverse reaction of ceramide biosynthesis using sphingosine and fatty acid. In mammals, different proteins catalyze these reactions while individually exhibiting optimal activity over a narrow pH range and have been accordingly called acid, neutral, and alkaline ceramidases. Several genes encode for variants of alkaline ceramidase in mammals. Brainwashing (Bwa) is the only putative alkaline ceramidase homologue present in Drosophila. In this study we have demonstrated that BWA does not exhibit ceramidase activity and that bwa null mutants display no loss of ceramidase activity. Instead, the neutral ceramidase gene CDase encodes the protein that is responsible for all measurable ceramidase activity in Drosophila. Our studies show strong genetic interaction of Bwa with CDase and the Drosophila ceramide kinase gene (DCERK). We show that, although BWA is unlikely to be a ceramidase, it is a regulator of sphingolipid flux in Drosophila. Bwa exhibits strong genetic interaction with other genes coding for ceramide-metabolizing enzymes. This interaction might partly explain its original identification as a ceramidase.  相似文献   

6.
Reports suggest that excessive ceramide accumulation in mitochondria is required to initiate the intrinsic apoptotic pathway and subsequent cell death, but how ceramide accumulates is unclear. Here we report that liver mitochondria exhibit ceramide formation from sphingosine and palmitoyl-CoA and from sphingosine and palmitate. Importantly, this activity was markedly decreased in liver from neutral ceramidase (NCDase)-deficient mice. Moreover, the levels of ceramide were dissimilar in liver mitochondria of WT and NCDase KO mice. These results suggest that NCDase is a key participant of ceramide formation in liver mitochondria. We also report that highly purified liver mitochondria have ceramidase, reverse ceramidase, and thioesterase activities. Increased accessibility of palmitoyl-CoA to the mitochondrial matrix with the pore-forming peptide zervamicin IIB resulted in 2-fold increases in palmitoyl-CoA hydrolysis by thioesterase. This increased hydrolysis was accompanied by an increase in ceramide formation, demonstrating that both outer membrane and matrix localized thioesterases can regulate ceramide formation. Also, ceramide formation might occur both in the outer mitochondrial membrane and in the mitochondrial matrix, suggesting the existence of distinct ceramide pools. Taken together, these results suggest that the reverse activity of NCDase contributes to sphingolipid homeostasis in this organelle in vivo.  相似文献   

7.
The ceramide turnover by lysosomal ceramidase in intact, living cells was investigated by loading radiolabeled sulfatide or sphingomyelin in situ on skin fibroblasts and lymphoid cells. The cells originated from normal individuals and from patients with acid ceramidase deficiency (Farber disease). While fibroblasts from individuals with Farber disease exhibited some impairment in the degradation of the ceramide produced by sulfatide hydrolysis, lymphoid cells from individuals with Farber disease metabolized the ceramide as readily as did normal cells, suggesting the existence in lymphoid cells of a nonlysosomal degradation pathway for the sulfatide-derived ceramide, In contrast, sphingomyelin loading in the presence of serum showed a considerably decreased turnover of ceramide in both fibroblasts and lymphoid cells from individuals with Farber disease. Further methodologic variation led to the use of LDL-associated radioactive sphingomyelin; LDL-association promoted the targeting of exogenous sphingomyelin to lysosomes. As a result, an almost complete deficiency of ceramide degradation was found in cells from severely affected patients with Farber disease. Our data with this novel method show that sphingomyelin loading of intact living cells is a simple, alternative means for determining ceramide degradation by lysosomal ceramidase and for diagnosing Farber disease.  相似文献   

8.
Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is the lipid hydrolase responsible for the degradation of ceramide into sphingosine and free fatty acids within lysosomes. The enzymatic activity was first identified over four decades ago, and is deficient in the inherited lipid storage disorder, Farber Lipogranulomatosis (Farber disease). Importantly, AC not only hydrolyzes ceramide into sphingosine, but also can synthesize ceramide from sphingosine and free fatty acids in vitro and in situ. This “reverse” enzymatic activity occurs at a distinct pH from the hydrolysis (“forward”) reaction (6.0 vs. 4.5, respectively), suggesting that the enzyme may have diverse functions within cells dependent on its subcellular location and the local pH. Most information concerning the role of AC in human disease stems from work on Farber disease. This lipid storage disease is caused by mutations in the gene encoding AC, leading to a profound reduction in enzymatic activity. Recent studies have also shown that AC activity is aberrantly expressed in several human cancers, and that the enzyme may be a useful cancer drug target. For example, AC inhibitors have been used to slow the growth of cancer cells, alone or in combination with other established, anti-oncogenic treatments. Aberrant AC activity also has been described in Alzheimer's disease, and overexpression of AC may prevent insulin resistant (Type II) diabetes induced by free fatty acids. Current information concerning the biology of this enzyme and its role in human disease is reviewed within.  相似文献   

9.
We report here a novel ceramidase that was purified more than 150, 000-fold from the membrane fraction of mouse liver. The enzyme was a monomeric polypeptide having a molecular mass of 94 kDa and was highly glycosylated with N-glycans. The amino acid sequence of a fragment obtained from the purified enzyme was homologous to those deduced from the genes encoding an alkaline ceramidase of Pseudomonas aeruginosa and a hypotheical protein of the slime mold Dictyostelium discoideum. However, no significant sequence similarities were found in other known functional proteins including acid ceramidases of humans and mice. The enzyme hydrolyzed various N-acylsphingosines but not galactosylceramide, sulfatide, GM1a, or sphingomyelin. The enzyme exhibited the highest activity around pH 7.5 and was thus identified as a type of neutral ceramidase. The apparent K(m) and V(max) values for C12-4-nitrobenzo-2-oxa-1, 3-diazole-ceramide and C16-(14)C-ceramide were 22.3 microM and 29.1 micromol/min/mg and 72.4 microM and 3.6 micromol/min/mg, respectively. This study also clearly demonstrated that the purified 94-kDa ceramidase catalyzed the condensation of fatty acid to sphingosine to generate ceramide, but did not catalyze acyl-CoA-dependent acyl-transfer reaction.  相似文献   

10.
The specific activity of acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23) was measured at pH4.5 in normal fibroblasts and in fibroblasts from patients with Farber disease and obligate heterozygotes. Greater activity was found when the synthetically made ceramide substrates contained shorter-chain fatty acids or higher content of double bonds. Acid ceramidase activities towards N-lauroyl- (C12:0), N-myristoyl- (C14:0) and N-palmitoyl- (C16:0) sphingosine (C18:1) were respectively about 38, 26 and 6 times higher than the activity towards the N-stearoyl (C18:0) substrate. The activity towards N-linolenoylsphingosine (C18:3/C18:1), N-linoleoylsphingosine (C18:2/C18:1) and N-oleoylsphingosine (C18:1/C18:1) were respectively about 5, 4 and 3 times higher than the activity towards N-stearoylsphingosine (C18:0/C18:1). The activity towards N-stearoyldihydrosphingosine (C18:0/C18:0) was about 40% of that towards N-stearoylsphingosine. Fibroblast alkaline ceramidase possessed significant activity only towards ceramides of unsaturated fatty acids, with a pH optimum of about 9.0. Deficiency of acid ceramidase activity in fibroblasts from patients with Farber disease and intermediate activities in obligate heterozygotes were demonstrated with all ceramides examined except for N-hexanoylsphingosine (C6:0/C18:1), whereas alkaline ceramidase activity was unaffected. Comparative kinetic studies of acid ceramidase activity with N-lauroylsphingosine and N-oleoylsphingosine demonstrated about 5 (2–12)-fold and 7 (4–17)-fold higher Km values in fibroblasts from patients with Farber disease as compared with normal controls. N-Lauroylsphingosine, towards which acid ceramidase activity in control fibroblasts was about 10 times higher than that towards N-oleoylsphingosine, may serve as a better substrate for enzymic diagnosis of Farber disease as well as for further characterization of the catalytically defective acid ceramidase.  相似文献   

11.
Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.  相似文献   

12.
Chromaffin cells from bovine adrenal medulla were examined for the presence of a specific prenylcysteine carboxymethyltransferase by using N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine as artificial substrates and a crude cell homogenate as the enzyme source. From Michaelis-Menten kinetics the following constants were calculated: K(m) 90 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-farnesyl-L-cysteine; K(m) 52 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-geranylgeranyl-L-cysteine. Both substrates were methylated to an optimal extent at the pH range 7. 4-8.0. Methylation activity increased linearly up to 20 min incubation time and was dose dependent up to at least 160 microg of protein. Sinefungin and S-adenosylhomocysteine both caused pronounced inhibition, as also to a lesser extent did farnesylthioacetic acid, deoxymethylthioadenosine and 3-deaza-adenosine. Effector studies showed that the methyltransferase activity varied depending on the concentration and chemical nature of the cations present. Monovalent cations were slightly stimulatory, while divalent metallic ions displayed diverging inhibitory effects. The inhibition by cations was validated by the stimulatory effect of the chelators EDTA and EGTA. Sulphydryl reagents inhibited methylation but to different degrees: Hg(2+)-ions: 100%, N-ethylmaleimide: 30%, dithiothreitol: 0% and mono-iodoacetate: 20%. Due to the hydrophobicity of the substrates dimethyl sulfoxide had to be included in the incubation mixture (<4%; still moderate inhibition at more elevated concentrations). The detergents tested affected the methyltransferase activity to a varying degree. The membrane bound character of the methyltransferase was confirmed.  相似文献   

13.
Ceramidases are key regulators of cell fate. The biochemistry of different ceramidases and of their substrate ceramide appears to be complex, mainly due to specific biophysical characteristics at the water-membrane interface. In the present study, we describe the design and synthesis of a set of fluorescently labeled ceramides as substrates for acid and neutral ceramidases. For the first time we have replaced the commonly used polar NBD-dye with the lipophilic Nile Red (NR) dye. Analysis of kinetic data reveal that although both the dyes do not have any noticeable preference for the substitution at acyl or sphingosine (Sph) part in ceramide towards hydrolysis by acid ceramidase, the ceramides with acyl-substituted NBD and Sph-substituted NR dyes have been found to be a better substrate for neutral ceramidase.  相似文献   

14.
Recently, we purified an alkaline ceramidase (CDase) of Pseudomonas aeruginosa and found that the enzyme catalyzed a reversible reaction in which the N-acyl linkage of ceramide was hydrolyzed or synthesized [J. Biol. Chem. 273 (1998) 14368-14373]. Here, we report the characterization of the reverse hydrolysis reaction of the CDase using a recombinant enzyme. The reverse hydrolysis reaction of the CDase was clearly distinguishable from the reaction of an acyl-coenzyme A (CoA) dependent N-acyltransferase, because the CDase catalyzed the condensation of a free fatty acid to sphingosine (Sph) without cofactors but did not catalyze the transfer of a fatty acid from acyl-CoA to Sph. The reverse hydrolysis reaction proceeded most efficiently in the presence of 0.05% Triton X-100 at neutral pH, while the hydrolysis reaction tended to be favored with an increase in the concentration of the detergent at alkaline pH. The specificity of the reverse reaction for fatty acids is quite broad; saturated and unsaturated fatty acids were efficiently condensed to Sph. In contrast, the stereo-specificity of the reverse reaction for the sphingoid bases is very strict; the D-erythro form of Sph, not the L-erythro or D/L-threo one, was only acceptable for the reverse reaction. Chemical modification of the enzyme protein affected or did not affect both the hydrolysis and reverse reactions to the same extent, suggesting that the two reactions are catalyzed at the same catalytic domain.  相似文献   

15.
The conversion of free lignoceric acid and sphingosine to lignoceroyl sphingosine (ceramide) by rat brain particulate fraction and two cytosolic factors, one heat-stable and the other heat-labile, requires pyridine nucleotide. This enzymatic reaction is apparently different from two previously published enzymic reactions, microsomal sphingosine:acyl CoA acyltransferase and the reverse reaction of lysosomal ceramidase. The reaction is strongly inhibited by common respiratory chain inhibitors, KCN, Antimycin A and sodium azide, this indicates the involvement of an electron-transfer system. From these observations it appears that the brain ceramide synthesis described above is catalyzed by an enzyme system which involves a mechanism for amide formation which has not been previously characterized.  相似文献   

16.
Complex sphingolipids are abundant as eukaryotic cell membrane components, whereas their metabolites, in particular ceramide, sphingosine, and sphingosine 1-phosphate, are involved in diverse cell signaling processes. In mammals, degradation of ceramide by ceramidase yields sphingosine, which is phosphorylated by the action of sphingosine kinase to generate sphingosine 1-phosphate. Therefore, ceramidases are key enzymes in the regulation of the cellular levels of ceramide, sphingosine, and sphingosine 1-phosphate. To explore the physiological functions of a neutral ceramidase with diverse cellular locations, we disrupted the Asah2 gene in mice. Asah2 null mice have a normal life span and do not show obvious abnormalities or major alterations in total ceramide levels in tissues. The Asah2-encoded neutral ceramidase is highly expressed in the small intestine along the brush border, suggesting that the neutral ceramidase may be involved in a pathway for the digestion of dietary sphingolipids. Indeed, Asah2 null mice were deficient in the intestinal degradation of ceramide. Thus, the results indicate that the Asah2-encoded neutral ceramidase is a key enzyme for the catabolism of dietary sphingolipids and regulates the levels of bioactive sphingolipid metabolites in the intestinal tract.  相似文献   

17.
Long-chain (sphingoid) bases may serve as another category of "lipid second messenger" because they inhibit protein kinase C and affect multiple cellular functions. Free sphingosine has been found in rat liver (Merrill, A. H., Jr., Wang, E., Mullins, R. E., Jamison, W. C. L., Nimkar, S., and Liotta, D. C. (1988) Anal. Biochem. 171, 373-381); hence, this study determined if liver plasma membranes contain free long-chain bases and have the ability to form them from endogenous enzymes and substrates. Isolated plasma membranes contained 0.45 nmol of sphingosine/mg of protein which, based on the recovery of the membranes, was equivalent to 3.5 +/- 1.2 nmol/g of liver and at least half of the total free sphingosine in liver. When the membranes were incubated at 37 degrees C, the amount increased at an initial rate of 5-25 pmol/min/mg, resulting in a 2-3-fold increase over an hour. Sphingosine formation required divalent cations, was optimal at neutral to alkaline pH, and was temperature-dependent. Activities with these characteristics were not identified in microsomes or lysosomes (lysosomal activities with acidic pH optima were detected, however); hence, they appear to reflect a separate plasma membrane system. Sphingosine formation was stimulated by ceramides either added exogenously or formed endogenously by treating the membranes with sphingomyelinase (but not endoglycoceramidase). Sphingomyelin hydrolysis to ceramide was also observed during incubation of the plasma membranes alone. Some of the properties of this system resembled the neutral sphingomyelinase and ceramidase activities of liver. While the physiological significance of this endogenous sphingosine is not known, this system has the appropriate subcellular location to provide sphingosine as a participant in signal transduction.  相似文献   

18.
Sphingolipids are degraded by sphingomyelinase and ceramidase in the gut to ceramide and sphingosine, which may inhibit cell proliferation and induce apoptosis, and thus have anti-tumour effects in the gut. Although previous rodent studies including experiments on knockout mice indicate a role of neutral ceramidase in ceramide digestion, the human enzyme has never been purified and characterized in its purified form. We here report the purification and characterization of neutral ceramidase from human ileostomy content, using octanoyl-[(14)C]sphingosine as substrate. After four chromatographic steps, a homogeneous protein band with 116kDa was obtained. MALDI mass spectrometry identified 16 peptide masses similar to human ceramidase previously cloned by El Bawab et al. [Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513] and Hwang et al. [Subcellular localization of human neutral ceramidase expressed in HEK293 cells, Biochem. Biophys. Res. Commun. 331 (2005) 37-42]. By RT-PCR and 5'-RACE methods, a predicted partial nucleotide sequence of neutral ceramidase was obtained from a human duodenum biopsy sample, which was homologous to that of known neutral/alkaline ceramidases. The enzyme has neutral pH optimum and catalyses both hydrolysis and formation of ceramide without distinct bile salt dependence. It is inhibited by Cu(2+) and Zn(2+) ions and by low concentrations of cholesterol. The enzyme is a glycoprotein but deglycosylation does not affect its activity. Our study indicates that neutral ceramidase is expressed in human intestine, released in the intestinal lumen and plays a major role in ceramide metabolism in the human gut.  相似文献   

19.
Ceramide and sphingosine are sphingolipids with important functional and structural roles in cells. In this paper we report a new enzyme-based method to simultaneously quantify the levels of ceramide and sphingosine in biological samples. This method utilizes purified human recombinant acid ceramidase to completely hydrolyze ceramide to sphingosine, followed by derivatization of the latter with naphthalene-2,3-dialdehyde (NDA) and quantification by reverse-phase high-performance liquid chromatography. The limits of detection for sphingosine-NDA and ceramidase-derived sphingosine-NDA were 9.6 and 12.3 fmol, respectively, and the limits of quantification were 34.2 and 45.7 fmol, respectively. The recovery of sphingosine and ceramide standards quantified by this assay were between 95.6 and 104.6%. The relative standard deviations for the intra- and interday sphingosine assay were 2.1 and 4.5%, respectively, and those for the ceramide assay were 3.3 and 4.1%, respectively. To validate this procedure, we quantified ceramide and sphingosine in mouse plasma, white blood cells, and hemoglobin, the first reported time that the amounts of these lipids have been documented in individual blood components. We also used this technique to evaluate the ability of a novel ceramide analog, AD2646, to inhibit the hydrolytic activity of acid ceramidase. The results demonstrate that this new procedure can provide sensitive, reproducible, and simultaneous ceramide and sphingosine quantification. The technique also may be used for determining the activity and inhibition of ceramidases and may be adapted for quantifying sphingomyelin and sphingosine-1-phosphate levels. In the future it could be an important tool for investigators studying the role of ceramide/sphingosine metabolism in signal transduction, cell growth and differentiation, and cancer pathogenesis and treatment.  相似文献   

20.
Human alveolar macrophages are unique in that they have an extended life span in contrast to precursor monocytes. In evaluating the role of sphingolipids in alveolar macrophage survival, we found high levels of sphingosine, but not sphingosine-1-phosphate. Sphingosine is generated by the action of ceramidase(s) on ceramide, and alveolar macrophages have high constitutive levels of acid ceramidase mRNA, protein, and activity. The high levels of acid ceramidase were specific to alveolar macrophages, because there was little ceramidase protein or activity (or sphingosine) in monocytes from matching donors. In evaluating prolonged survival of alveolar macrophages, we observed a requirement for constitutive activity of ERK MAPK and the PI3K downstream effector Akt. Blocking acid ceramidase but not sphingosine kinase activity in alveolar macrophages led to decreased ERK and Akt activity and induction of cell death. These studies suggest an important role for sphingolipids in prolonging survival of human alveolar macrophages via distinct survival pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号