共查询到17条相似文献,搜索用时 171 毫秒
1.
长寿是一个复杂的特征,因遗传、环境等因素的差异而不同,理想情况下主要取决于衰老速率。相关分子机制多种多样,主要有生长激素(GH)和胰岛素样生长因子1(IGF-1)途径、Forkhead box O3基因(FOXO3)、AMP活化蛋白激酶(AMPK)、sirtuins家族基因、载脂蛋白E基因(APOE)、端粒酶基因、mTOR信号通路、抑癌基因p53、慢性炎症转录因子NF-κB、自噬-溶酶体信号通路、长链非编码RNA(lncRNAs)、蛋氨酸亚砜还原酶系统(Msr)。同时,环境因素也影响着人类的寿命,例如饮食限制、运动、地理条件、环境压力等。本文从遗传和环境两方面综述影响人类寿命因素的最新研究进展。 相似文献
2.
3.
衰老和长寿基因方面的研究多以线虫 (如C .elegans)、酵母、果蝇、小鼠为模型 ,目前已鉴定了数十种衰老相关基因 ,改变某些基因的活性会延长寿命或促进衰老。最早引起人们兴趣的“老年基因”是DAF 16 ,但其机制至今未明。daf 16编码转录因子DAF 16 ,后者是一种调节其它基因活性的蛋白。DAF 16是C .elegans寿命的重要调节因子 ,它的作用可被某种激素信号途径 (例如由类似于哺乳类胰岛素和胰岛素样生长因子的蛋白激活的信号途径 )所阻断 ,减弱这一信号途径的活动能使成年C .elegans的寿命明显延长 ,对果蝇和小鼠也如此。因此要想完全阐明… 相似文献
4.
“突变”的概念可以三种方式参与机体衰老研讨:①在衰老过程中突变发生于体细胞的假说;②预测连续世代的生殖细胞系中突变累积的衰老演化说;③通过突变、转化或选择来鉴定在调控动物寿命中起主要作用的基因。在本条目中,“衰老”一词被定义为一种发生于机体内的导致脆弱性升高和活力下降的退化过程。在此种意义上,衰老与变老(senescence)是同义的,因为我们关注的是该过程的退行性方面。根据对衰老演化的研讨,迫使人们思考年龄特异性生存率与年龄特异性生殖率双重下降的问题。在这种情况下,衰老是一种由于体内生理退化所致的年龄特… 相似文献
5.
高杰沈成黄新河 《中国生物化学与分子生物学报》2017,33(11):1098-1104
表观遗传通过调控基因表达影响众多生命过程。大量的证据表明,表观遗传在衰老调控中也发挥重要的作用。本文介绍表观遗传的3种主要机制对衰老的调控作用,及其对衰老的2个主要特征的影响。同时,介绍热量限制介导的抗衰老作用的表观遗传的调控机制,和3种重要的抗衰老活性小分子及其如何通过表观遗传相关机制发挥抗衰老作用。本文结果为进一步研究表观遗传在衰老调控中的作用,以及发展抗衰老干预措施提供了理论依据和重要的参考资料。 相似文献
6.
7.
8.
“衰老基因”与“长寿基因” 总被引:4,自引:0,他引:4
“衰老基因”与“长寿基因”童坦君,张宗玉(北京医科大学生物化学与分子生物学系,北京100083)关键词衰老基因,长寿基因衰老过程存在着遗传程序控制,这一看法确有证据。至于生物体内是否存在专门引起衰老的“衰老基因”或专使寿命延长的“长寿基因”,近年来也... 相似文献
9.
10.
11.
12.
Sir2基因家族的功能和作用机制 总被引:3,自引:0,他引:3
Sir2(silenceinformationregulator)基因家族是一种保守的从古细菌到哺乳动物都存在的NAD 依赖的组蛋白/非组蛋白去乙酰化酶。在酵母中,Sir2连同与它相互作用的几个蛋白质在基因沉默、基因组稳定性、细胞寿命以及代谢调节上起着不可缺少的作用。其主要的作用机制是:热量限制降低了抑制物烟酰胺的浓度,从而激活了Sir2的组蛋白去乙酰化功能。在哺乳动物中,有7个Sir2同源基因,分别命名为SIRT1到SIRT7。其中SIRT1研究的最多,它在DNA损伤修复、细胞周期控制、抑制细胞凋亡、抵抗氧化逆境和延长细胞寿命方面起着重要作用。它的这些功能是通过和p53、FOXO3、Ku70和PGC-1α等蛋白质之间的相互作用而实现的。 相似文献
13.
长寿是一个美丽的梦想,衰老是一个神秘的谜团.旨在回顾西方文明从远古至20世纪初,从民间到学术界,探索长寿之路,破解衰老之谜,冥思苦想苦苦追寻的漫漫历程,并按历史的足迹,将这错综复杂的过程分为八个历史时期予以阐述. 相似文献
14.
Chen-Yu Liao Brad A. Rikke Thomas E. Johnson Vivian Diaz James F. Nelson 《Aging cell》2010,9(1):92-95
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal. 相似文献
15.
Myeloperoxidase (MPO), a heme protein existing in neutrophil and monocyte, is implicated in various stages of inflammatory conditions with the production of a variety of potent oxidants. To investigate the extent of the involvement of MPO in aging, we measured MPO activities in kidney of rats at different ages maintained with an ad libitum (AL) or a calorie restriction (CR) dietary regimen. Results showed that the MPO activities increased during aging in AL rats, but were significantly attenuated by CR. This result was consistent with altered protein level of MPO during aging. In addition, we were able to detect dityrosine that is a stable end MPO-oxidation product. The amount of dityrosine increased in old AL, but not in old CR rats. To examine the source responsible for increased MPO activity during aging for leukocyte recruitment and infiltration, the levels of vascular cell adhesion molecule (VCAM-1) protein were measured. The level of VCAM-1 showed age-dependent increase in AL rats, which was correlated with higher activity of MPO in old AL rats. Furthermore, we have found that LPS-induced inflammation increased the activity and protein levels of MPO, and VCAM-1 expression in young rat kidneys. These findings suggest that increased MPO activity with aging may related to increased recruitment of inflammatory cells, contributing to protein oxidation accumulation in the aging process. We propose that age-related alterations of MPO, dityrosine, and VCAM were modulated by CR through its anti-inflammatory action. 相似文献
16.
Calorie restriction (CR) extends lifespan in yeast, worms, flies and mammals, suggesting that it acts via a conserved mechanism. In yeast, activation of the NAD‐dependent histone deacetylase, Sir2, by CR is thought to increase silencing at the ribosomal DNA, thereby reducing the recombination‐induced generation of extrachromosomal rDNA circles, hence increasing replicative lifespan. Although accumulation of extrachromosomal rDNA circles is specific to yeast aging, it is thought that Sirtuin activation represents a conserved longevity mechanism through which the beneficial effects of CR are mediated in various species. We show here that growing yeast on 0.05 or 0.5% glucose (severe and moderate CR, respectively) does not increase silencing at either sub‐telomeric or rDNA loci compared with standard (2% glucose) media. Furthermore, rDNA silencing was unaffected in the hxk2Δ, sch9Δ and tor1Δ genetic mimics of CR, but inhibited by FOB1 deletion. All these interventions extend lifespan in multiple yeast backgrounds, revealing a poor correlation between rDNA silencing and longevity. In contrast, CR and deletion of the FOB1, HXK2, SCH9 and TOR1 genes, all significantly reduced rDNA recombination. This silencing‐independent mechanism for suppressing rDNA recombination may therefore contribute to CR‐mediated lifespan extension. 相似文献
17.
Reduced function mutations in the insulin/IGF-I signaling pathway increase maximal lifespan and health span in many species. Calorie restriction (CR) decreases serum IGF-1 concentration by ~40%, protects against cancer and slows aging in rodents. However, the long-term effects of CR with adequate nutrition on circulating IGF-1 levels in humans are unknown. Here we report data from two long-term CR studies (1 and 6 years) showing that severe CR without malnutrition did not change IGF-1 and IGF-1 : IGFBP-3 ratio levels in humans. In contrast, total and free IGF-1 concentrations were significantly lower in moderately protein-restricted individuals. Reducing protein intake from an average of 1.67 g kg(-1) of body weight per day to 0.95 g kg(-1) of body weight per day for 3 weeks in six volunteers practicing CR resulted in a reduction in serum IGF-1 from 194 ng mL(-1) to 152 ng mL(-1). These findings demonstrate that, unlike in rodents, long-term severe CR does not reduce serum IGF-1 concentration and IGF-1 : IGFBP-3 ratio in humans. In addition, our data provide evidence that protein intake is a key determinant of circulating IGF-1 levels in humans, and suggest that reduced protein intake may become an important component of anticancer and anti-aging dietary interventions. 相似文献