首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
李淑红  屈亮  李素  仇华吉 《微生物学报》2021,61(8):2236-2249
真核细胞受到热休克、氧化应激、营养缺乏或者病毒感染等外界压力的刺激下会诱导一系列的应答反应,如形成应激颗粒(stress granule,SG),从而使细胞能更好地适应环境压力。SG作为胞浆中翻译起始复合物的聚集产物,在细胞的基因表达和稳态中发挥着重要的作用。病毒感染是诱导SG形成的条件之一,病毒侵入宿主细胞后会"借用"宿主的翻译机制完成自己的生命周期,宿主为了抵抗病毒的侵略而暂停翻译形成SG。本文对SG的产生及功能,SG与病毒的相互作用以及SG与病毒诱导的先天性免疫的关系等方面进行了综述,以期为进一步研究抗病毒策略提供方向。  相似文献   

2.
哺乳动物细胞受到热休克、氧化应激、营养缺乏或者病毒感染等环境压力时,能够迅速启动细胞的压力应答机制,终止细胞内的蛋白翻译,形成应激颗粒(stress granules, SGs)。SGs作为胞浆中翻译起始复合物的聚集产物,在细胞的基因表达和稳态中发挥着重要的作用,与细胞凋亡以及核功能具有密切联系。尤其是当病毒感染细胞时,SGs的形成可以使细胞内病毒蛋白翻译水平大大降低,从而抑制入侵病毒的复制。然而,病毒在长期进化过程中也衍生出了对抗细胞压力应答的相应机制,如与SGs关键组分相互作用,甚至切割等方式。本文对SGs的组成及诱发机制,特别是多种病毒诱导eIF2α磷酸化促成SGs组装的机制,以及病毒进化过程中形成的应对措施等方面进行了综述,旨在进一步阐释病毒感染与应激颗粒形成之间的相互影响和调控,为人们深入理解人体先天性免疫防御提供参考。  相似文献   

3.
[目的]研究新城疫病毒(Newcastle disease virus,NDV) HBUN/LSRC/F3株(以下简称NDV F3)诱导宫颈癌细胞(HeLa)发生核糖体应激后对eIF2α介导的翻译起始复合体eIF4F的调控作用。[方法]流式细胞术及CCK-8检测细胞凋亡;实时荧光定量PCR (quantitative real-time polymerase chain reaction,qRT-PCR)检测c-Myc基因表达;流式细胞术分析细胞周期;Western blotting技术检测c-Myc、RPS7、Bcl-2、NP、eIF4E及eIF2α蛋白的表达;Western blotting和免疫荧光染色技术检测NP、eIF4E蛋白定位。[结果]与阴性对照组相比,NDV F3抑制HeLa细胞增殖并诱导细胞凋亡。细胞周期中G0/G1期出现停滞,c-Myc表达呈时间依赖性抑制,c-Myc与Bcl-2蛋白表达量在0-48 h内逐渐下降,NP蛋白在24 h时生成并逐渐增加,RPS7、eIF4E和eIF2α蛋白含量在0-48 h内呈先增加后降低趋势。Western blotting定位分析及激光共聚焦显微镜结果显示NP蛋白主要存在细胞质中,NP与eIF4E存在共定位现象。[结论]NDV F3诱导HeLa细胞凋亡并引发核糖体应激反应,NP与eIF4E相互作用而抑制eIF2α介导的翻译起始复合体eIF4F形成,阻断其与宿主mRNA之间的联系,同时促进NDV F3 mRNA的翻译,最终造成宿主蛋白翻译抑制。  相似文献   

4.
Leng XR  Wu Y  Jiang YW 《生理科学进展》2010,41(2):125-128
白质消融性白质脑病(leukoencephalopathy with vanishing white matter,VWM)是儿童最常见的遗传性白质脑病之一,是目前人类遗传性疾病中首个被确定由于mRNA翻译启动异常所致疾病,是由编码真核细胞翻译启动因子2B(eukaryotic translation initiation factor 2B,eIF2B)的五个亚单位(eIF2Bα、β、γ、δ、ε)的基因(EIF2B1-5)任一突变所致。eIF2B是一种鸟嘌呤核苷酸交换因子,调控全部mRNA的翻译起始过程。eIF2B突变功能研究尚处于起步阶段。EIF2B突变可能通过不同的途径影响eIF2B的功能。例如,通过影响eIF2B复合体的形成或其与底物的结合从而破坏eIF2B的鸟苷酸转移因子(GEF)活性或引起细胞应激反应异常。EIF2B突变是否影响胶质前体细胞的分化是VWM发病机制的另一个关键问题。  相似文献   

5.
真核生物mRNA的翻译调控,通常发生在起始阶段。异源三聚体复合物eIF4F中的eIF4E与mRNA5'端帽子结构的结合是该阶段的核心,而eIF4E抑制性蛋白正是通过与eIF4E的相互作用而调控着翻译起始过程,进而调控着翻译的速率。eIF4E抑制性蛋白对翻译的这种调控作用对细胞的生长、发育、癌症以及神经生物学方面有巨大影响,现主要就eIF4E抑制性蛋白的翻译调控机制进行综述。  相似文献   

6.
eIF2是一种通用的真核翻译因子,它的α亚基在eIF2激酶作用下发生磷酸化修饰后,会引起翻译受阻,从而抑制蛋白质生物合成,近年来,在酵母和哺乳动物中观察到eIF2α磷酸化后,还能特异性激活某种蛋白质的合成,如酵母的GCN4蛋白,哺乳动物的ATF4蛋白。eIF2α磷酸化修饰后具备的特异性蛋白质合成激活作用的机制及其生物学意义,备受人们关注。  相似文献   

7.
eIF4E作用及调节机制   总被引:3,自引:0,他引:3  
eIF4E作为翻译启动因子复合体eIF4-F的关键部分,调节细胞的蛋白质合成的限速步骤,ras基因加强eIF4E的磷酸化,c-myc基因增加eIF4E mRNA水平,eIF4E活性随其本身磷酸化的加强而加强,随其结合蛋白的磷酸化加强而减弱。eIF4E是新近发现的原癌,这量的eIF4E选择性地加强原癌基因等“弱mRNA”的翻译:可以通过加强蛋白质合成的速度,也可以加速mRNA由细胞核由胞浆转移。  相似文献   

8.
肥胖是一种影响人群健康的重要致病因素 ,肥胖导致胰岛素抵抗和Ⅱ型糖尿病的机制目前尚不清楚 .最近Umut zcan等人在细胞培养和动物模型研究的基础上认为 ,内质网应激可能参与肥胖时胰岛素抵抗的发病过程 .研究者以PKR likekinase(PERK ,内质网膜上的一种蛋白激酶 )和翻译起始因子eIF2α的磷酸化水平为内质网应激指标 ,发现饮食诱导肥胖组及遗传性肥胖组小鼠肝组织和脂肪组织PERK和eIF2α磷酸化水平较正常饮食组和遗传性消瘦组明显升高 .同时 ,葡萄糖调节蛋白 78(GRP78,内质网应激指标 )mRNA的表达水平增高 ,且GRP78mRNA表达的…  相似文献   

9.
富含AU元件的RNA结合蛋白1(AU-rich element binding factor 1,AUF1)具有剪接加工前体mRNA、转运和降解成熟mRNA的功能,同时调节带有富含AU元件(AU-rich element,ARE)的mRNA翻新。AUF1通过介导炎性细胞因子及其反应从而控制炎症进程。研究表明,AUF1与肠道病毒71型的内部核糖体进入位点(internal ribosome entry site,IRES)结合并与其交互负性调节病毒翻译与复制,它还可被募集到柯萨奇病毒B3型和肠道病毒71型诱导的应激颗粒中。  相似文献   

10.
微管是由α/β微管蛋白(α/βtubulin)聚合形成的管状细胞骨架,在许多生物学过程中起着重要的作用。微管的结构与性质受到多种因素的调控,其中微管蛋白的翻译后修饰是一类重要的调控方式。主要介绍目前已发现的微管蛋白翻译后修饰种类,并讨论这些修饰的生物学功能与作用机制。  相似文献   

11.
Cap-binding proteins of the elF4E family are generally involved in mediating ribosome recruitment to capped mRNA via an interaction with the initiation factor elF4G. However, Schizosaccharomyces pombe has two elF4E isoforms, one of which (elF4E2, encoded by tif452) has a relatively low affinity for elF4G. We show that tif452 is required for specific stress responses. An S. pombe, tif452delta mutant manifests slow growth under conditions of nutrient, temperature and salt stress. elF4E2 shows a distinct subcellular distribution to elF4E1, the cap-binding factor that is required for mainstream translation. In response to salt stress, the cellular level of elF4E2 increases, whereas the amount of intact elF4G decreases, leaving elF4E2 as the predominant elF4E isoform in a cell deficient in ElF4G. The presence of elF4E2 modifies the competence of S. pombe ribosomes to translate mRNAs with structured leaders in vivo. The tif452 promoter has putative stress-response (T-rich) motifs, whereas elF4E2 seems to be a new type of stress-response factor.  相似文献   

12.
Stress granules (SGs) are nonmembrane assemblies formed in cells in response to stress conditions. SGs mainly contain untranslated mRNA and a variety of proteins. RNAs and scaffold proteins with intrinsically disordered regions or RNA‐binding domains are essential for the assembly of SGs, and multivalent macromolecular interactions among these components are thought to be the driving forces for SG assembly. The SG assembly process includes regulation through post‐translational modification and involvement of the cytoskeletal system. During aging, many intracellular bioprocesses become disrupted by factors such as cellular environmental changes, mitochondrial dysfunction, and decline in the protein quality control system. Such changes could lead to the formation of aberrant SGs, as well as alterations in their maintenance, disassembly, and clearance. These aberrant SGs might in turn promote aging and aging‐associated diseases. In this paper, we first review the latest progress on the molecular mechanisms underlying SG assembly and SG functioning under stress conditions. Then, we provide a detailed discussion of the relevance of SGs to aging and aging‐associated diseases.  相似文献   

13.
Eukaryotic initiation factor (elF) 4A functions as a subunit of the initiation factor complex elF4F, which mediates the binding of mRNA to the ribosome. elF4A possesses ATPase and RNA helicase activities and is the prototype for a large family of putative RNA helicases (the DEAD box family). It is thought that the function of elF4A during translation initiation is to unwind the mRNA secondary structure in the 5' UTR to facilitate ribosome binding. However, the evidence to support this hypothesis is rather indirect, and it was reported that elF4A is also required for the translation of mRNAs possessing minimal 5' UTR secondary structure. Were this hypothesis correct, the requirement for elF4A should correlate with the degree of mRNA secondary structure. To test this hypothesis, the effect of a dominant-negative mutant of mammalian elF4A on translation of mRNAs with various degrees of secondary structure was studied in vitro. Here, we show that mRNAs containing stable secondary structure in the 5' untranslated region are more susceptible to inhibition by the elF4A mutant. The mutant protein also strongly inhibits translation from several picornavirus internal ribosome entry sites (IRES), although to different extents. UV crosslinking of elF4F subunits and elF4B to the mRNA cap structure is dramatically reduced by the elF4A mutant and RNA secondary structure. Finally, the elF4A mutant forms a more stable complex with elF4G, as compared to the wild-type elF4A, thus explaining the mechanism by which substoichiometric amounts of mutant elF4A inhibit translation.  相似文献   

14.
In the absence of the scanning ribosomes that unwind mRNA coding sequences and 5′UTRs, mRNAs are likely to form secondary structures and intermolecular bridges. Intermolecular base pairing of non polysomal mRNAs is involved in stress granule (SG) assembly when the pool of mRNAs freed from ribosomes increases during cellular stress. Here, we unravel the structural mechanisms by which a major partner of dormant mRNAs, YB-1 (YBX1), unwinds mRNA secondary structures without ATP consumption by using its conserved cold-shock domain to destabilize RNA stem/loops and its unstructured C-terminal domain to secure RNA unwinding. At endogenous levels, YB-1 facilitates SG disassembly during arsenite stress recovery. In addition, overexpression of wild-type YB-1 and to a lesser extent unwinding-defective mutants inhibit SG assembly in HeLa cells. Through its mRNA-unwinding activity, YB-1 may thus inhibit SG assembly in cancer cells and package dormant mRNA in an unfolded state, thus preparing mRNAs for translation initiation.  相似文献   

15.
16.
In response to mammalian orthoreovirus (MRV) infection, cells initiate a stress response that includes eIF2α phosphorylation and protein synthesis inhibition. We have previously shown that early in infection, MRV activation of eIF2α phosphorylation results in the formation of cellular stress granules (SGs). In this work, we show that as infection proceeds, MRV disrupts SGs despite sustained levels of phosphorylated eIF2α and, further, interferes with the induction of SGs by other stress inducers. MRV interference with SG formation occurs downstream of eIF2α phosphorylation, suggesting the virus uncouples the cellular stress signaling machinery from SG formation. We additionally examined mRNA translation in the presence of SGs induced by eIF2α phosphorylation-dependent and -independent mechanisms. We found that irrespective of eIF2α phosphorylation status, the presence of SGs in cells correlated with inhibition of viral and cellular translation. In contrast, MRV disruption of SGs correlated with the release of viral mRNAs from translational inhibition, even in the presence of phosphorylated eIF2α. Viral mRNAs were also translated in the presence of phosphorylated eIF2α in PKR(-/-) cells. These results suggest that MRV escape from host cell translational shutoff correlates with virus-induced SG disruption and occurs in the presence of phosphorylated eIF2α in a PKR-independent manner.  相似文献   

17.
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.  相似文献   

18.
In response to environmental stress, the related RNA-binding proteins TIA-1 and TIAR colocalize with poly(A)(+) RNA at cytoplasmic foci that resemble the stress granules (SGs) that harbor untranslated mRNAs in heat shocked plant cells (Nover et al. 1989; Nover et al. 1983; Scharf et al. 1998). The accumulation of untranslated mRNA at SGs is reversible in cells that recover from a sublethal stress, but irreversible in cells subjected to a lethal stress. We have found that the assembly of TIA-1/R(+) SGs is initiated by the phosphorylation of eIF-2alpha. A phosphomimetic eIF-2alpha mutant (S51D) induces the assembly of SGs, whereas a nonphosphorylatable eIF-2alpha mutant (S51A) prevents the assembly of SGs. The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA-binding protein acts downstream of the phosphorylation of eIF-2alpha to promote the sequestration of untranslated mRNAs at SGs. The assembly and disassembly of SGs could regulate the duration of stress- induced translational arrest in cells recovering from environmental stress.  相似文献   

19.
20.
Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号