首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
造血基质细胞是造血微环境的重要成分,它对造血干细胞和祖细胞增殖分化的影响已引起人们重视。本室建立的小鼠胎肝造血基质细胞系(MFLSC)为研究其在调控造血中的意义提供了方便条件。 以往研究证明,MFLSC可向培养上清液中释放多种造血活性物质,将此培养上清代替外源性刺激因子加入到半固体培养体系中可支持红系、粒系或由红、粒、巨噬细胞组成的集落(CFU—EGM)生长。MFLSC本身对CFU-GM生长的调控作用已有报道。本工作观察MFLSC对小鼠骨髓红系造血祖细胞生长的影响,旨在进一步认识小鼠胎肝基质细胞在调控造血中的作用机理。  相似文献   

2.
本实验以Dexter培养体系作小鼠胎肝和骨髓造血基质细胞贴壁培养。在所获的基质细胞贴壁层上作红系造血祖细胞集落培养,观察两种来源造血基质细胞对红系集落生长的影响。实验结果表明,胎肝造血基质细胞贴壁层能明显促进早期红系造血祖细胞(BFU-E)形成集落,却不明显影响晚期红系造血祖细胞(CFU-E)的生长。成年小鼠骨髓造血基质细胞贴壁层对BFU-E和CFU-E均有刺激生长的作用;但对前者生长的刺激性影响较胎肝造血基质细胞贴壁层为弱。造血基质细胞贴壁层对红系集落生长的促进作用主要是通过体液因子实现的,细胞间短距离调节的影响亦不能除外。  相似文献   

3.
为研究胎肝中造血和肝上皮发育的关系,建立了小鼠胎肝高增殖潜能集落形成细胞(HPP-CFC)培养体系,并进行了单克隆培养以及诱导分化实验.在造血和肝诱导因子的共同作用下,对单克隆来源的HPP集落细胞向造血和肝上皮细胞进行诱导分化,采用透射电镜(TEM)、巢式RT-PCR、细胞免疫荧光检测,从细胞形态、超微结构、上皮细胞分化标志等方面对分化后的细胞进行检测.检测结果显示诱导后的部分细胞具有肝细胞特异性的超微结构并不同程度的表达白蛋白(ALB)、甲胎蛋白(AFP)、细胞角蛋白(CK8,CK18)等肝上皮分化标志,同时还表达间质标志α-SMA和血管内皮细胞标志Flk-1.免疫磁珠分选表明:胎肝来源的HPP-CFC主要来自于CD45+细胞,CD45-细胞不具有形成造血克隆的能力.在肝上皮细胞分化潜能上,流式分选获得的CD49f+/Sca-1+细胞与未分选细胞无明显差异.该模型的克隆源性通过细胞混合实验进行证明.研究结果表明,改进的胎肝来源的HPP-CFC可能代表了一个新的造血向肝上皮细胞分化的单克隆模型,为研究胎肝中造血和非造血细胞的发育关系提供了一个新的切入点.  相似文献   

4.
目的:系统地考察小鼠胚胎循环血中造血祖细胞的发育特征。方法:应用体外集落形成实验、脾结节形成实验、基质细胞OP9或OP9-DL1共培养体系,分别考察胚胎期10.5d(E10.5)和11.5d(E11.5)小鼠胚胎循环血的髓系祖细胞和淋系祖细胞潜能。结果:小鼠胚胎循环血中含有各类髓系祖细胞,E11.5的小鼠胚胎循环血的髓系祖细胞的数量显著增加;同时循环血细胞经体外诱导可产生B、T淋巴细胞。结论:小鼠E10.5-E11.5的胚胎循环血中存在丰富的具有髓系和淋系潜能的前体细胞。  相似文献   

5.
基质细胞是胎肝造血微环境的主要成分,参与造血干/祖细胞的自我更新、增殖分化的调控。为了研究小鼠胎肝基质细胞在造血微环境中的功能,采用转染SV40大T抗原基因的方法建立了小鼠胚胎期第12.5天(Embryonic-day 12.5, E12.5d)胎肝基质细胞系A4、B3,并进一步鉴定基质细胞系的一般细胞生物学特性和造血支持功能。结果:A4、B3为细胞形态、生长行为以及表面分子表达不同细胞系,二者均可维持骨髓源长期培养启动细胞(Longterm cultureinitiating cell,LTC-IC)至少4周并且有不同程度的扩增LTC-IC能力,其中B3扩增LTC-IC的能力是A4的83倍。外源性细胞因子组合SCF+IL-3+IL6+Epo在本实验体系中不影响LTC-IC数量的维持和扩增。暗示E12.5d胎肝造血微环境中基质细胞的功能是不同的,其机制有待进一步研究。  相似文献   

6.
目的:研究Rictor基因对胚胎发育过程中胎肝造血的影响。方法:利用Cre-LoxP基因敲除系统,特异性在小鼠内皮(VEC-Cre)和造血(Vav1-Cre)系统敲除Rictor基因;通过流式细胞术分析特异敲除Rictor基因后小鼠胚胎第15 d胎肝中的各系细胞比例的变化,并进一步分析造血干细胞的变化。结果:利用VEC-Cre和Vav1-Cre小鼠敲除Rictor基因后,胎肝中各系细胞比例均有所减少,B细胞比例的减少较为明显,造血干细胞比例也明显减少。结论:Rictor基因敲除损害胎肝组织中造血干细胞的产生和各系细胞的分化。  相似文献   

7.
人胎肝cDNA文库FLD4585克隆可能编码一种造血相关的转录因子,本文旨在从22周孕龄人胎肝中获得其编码基因的全长cDNA序列,分析其编码蛋白的功能域、基因组结构、染色体定位、亚细胞定位及表达谱特征.采用5′RACE方法获得FLD4585克隆全长;生物信息学方法确定hBKLF基因结构、染色体定位及功能域特征;GFP融合蛋白技术确定hBKLF亚细胞定位;Northern 杂交、RT-PCR、Western印迹方法分析其表达谱.结果获得了FLD4585克隆编码的hBKLF cDNA全长序列,它含1810 bp,编码345个氨基酸,与小鼠BKLF同源,C端含3个特征性C2H2结构的锌指,是KLF转录因子家族的新成员.hBKLF基因跨越33 kb,含6个外显子和5个内含子,位于4号染色体4p15.2~p16.1.GFP-hBKLF融合蛋白在COS-7细胞中呈细小点状分布于核内,核仁区无分布.hBKLF含有两个转录本,大小为4.4 kb~7.5 kb和1.35 kb~2.4 kb.大转录本在成人及胎儿组织广泛表达,小转录本在外周血白细胞、肝脏和骨髓表达量最高,红系和粒系细胞均表达hBKLF.hBKLF表达量随肝脏发育成熟而下降,随红系、粒系成熟而升高.以上研究提示hBKLF可能是一种在体内广泛发挥作用的转录因子,在造血的调控中可能有重要作用.  相似文献   

8.
人胎肝cDNA文库FLD4585克隆可能编码一种造血相关的转录因子,本文旨在从22周孕龄人胎肝中获得其编码基因的全长cDNA序列,分析其编码蛋白的功能域、基因组结构、染色体定位、亚细胞定位及表达谱特征。采用5′RACE方法获得FLD4585克隆全长;生物信息学方法确定hBKLF基因结构、染色体定位及功能域特征;GFP融合蛋白技术确定hBKLF亚细胞定位;Northern杂交、RT-PCR、Western印迹方法分析其表达谱。结果获得了Fld4585克隆编码的hBKLFcDNA全长序列,它含1810bp,编码345个氨基酸,与小鼠BKLF同源,C端含3个特征性C2H2结构的锌指,是KLF转录因子家族的新成员。HBKLF基因跨越33kb,含6个外显子和5个内含子,位于4号染色体4p15.2-p16.1。GFP-hBKLF融合蛋白在COS-7细胞中呈细小点状分布于核内,核仁区无分布。HBKLF含有两个转录本,大小为4.4kb-7.5kb和1.35kb-2.4kb。大转录本在成人及胎儿组织广泛表达,小转录本在外周血白细胞、肝脏和骨髓表达量最高,红系和粒系细胞均表达hBKLF。HBKLF表达量随肝脏发育成熟而下降,随红系、粒系成熟而升高。以上研究提示hBKLF可能是一种在体内广泛发挥作用的转录因子,在造血的调控中可能有重要作用。  相似文献   

9.
siRNA沉默socs3对红系发育的影响   总被引:1,自引:1,他引:0  
为了研究细胞因子信号转导分子3(suppressor of cytokine signals-3,SOCS-3)对造血发育的影响,构建了SOCS-3慢病毒siRNA干涉载体,并转染人红白血病细胞株K562.根据绿色荧光蛋白的表达进行流式分选后,获得了高表达慢病毒干涉载体的细胞.实时荧光定量PCR和Western-blot检测了转染细胞中SOCS-3基因的干涉效率,结果显示,与对照组相比,siRNA干涉后K562细胞SOCS-3基因的表达量仅为其相对表达量的22.1%,干涉效率77.9%;Western-blot结果显示,SOCS-3在蛋白质水平表达也明显受抑制.进一步对SOCS-3基因沉默后的K562细胞进行了诱导分化,并采用联苯胺染色法检测K562细胞向红系分化比例变化,免疫荧光染色检测细胞表面抗原的变化,RT-PCR检测造血相关基因的变化.结果发现,SOCS-3沉默后K562细胞向红系的发育能力显著提高.研究结果证明,SOCS-3在造血发育中有重要调控作用,而对其表达进行干涉或沉默将在规模化的红细胞诱导研究中发挥重要作用.  相似文献   

10.
本文对胎肝细胞输注或全胚注射液治疗再生障碍性贫血的可能机理作了一些实验性探讨。研究结果表明: 1.胎肝细胞在培养或解体过程中释放某些刺激红系造血的因子,有利于已经损伤的造血功能的恢复。 2.对正常小鼠注射无细胞胎肝制剂或全胚注射液后,骨髓红系细胞的分裂指数明显升高,骨髓中粒/红比值趋于降低,反映了骨髓中红系细胞增生活跃的状态。 3.对正常小鼠注射无细胞胎肝制剂或全胚注射液后,外周血网织红细胞和腹腔巨噬细胞的吞噬指数趋于平行增高,其增高程度和持续时间随注射次数的增加而加强。 小鼠注射无细胞胎肝制剂或全胚注射液后,巨噬细胞吞噬指数的增加,反映了巨噬细胞激活,这种作用除了提高机体的非特异性免疫功能,增强机体的抵抗力外,还可能通过巨噬细胞的活化,直接或间接地调控机体红系细胞的增殖,因而,对巨噬细胞在造血调控中的作用以及它在再生障碍性贫血发病机理研究中的意义提出了讨论。  相似文献   

11.
A method of definitive identification of mutant (S1/S1d) and wild-type (+/+) mouse embryos in segregating litters is described, based on the total number of circulating erythrocytes in a unit volume of embryonic blood and the relative proportion of nonnucleated vs. nucleated red blood cells. Evidence is presented that from days 13–17 of gestation, S1/S1d embryos have many fewer fetal liver derived nonnucleated erythrocytes whereas the number of yolk sac-derived nucleated red blood cells is similar between S1/S1d and +/+. Erythroid precursor cells at various stages of maturation in mutant fetal livers are studied by light and electron microscopy, and their fine structure is found to be identical to those present in normal embryos. The number of hemoglobin-containing mature erythroblasts in mutant fetal livers is far fewer than that of the normal, whereas the number of immature erythroid precursors present in a unit area of fetal liver is not significantly different between S1/S1d and +/+. It is suggested that the mutant S1 gene product(s) interferes with or fails to support the differentiation of immature erythroid precursors into hemoglobin synthesizing cells.  相似文献   

12.
We describe two new markers of mouse liver epithelial cells detected by monoclonal antibodies. Immunomorphological localization of antigens was performed using light and electron microscopy. Antigen G7 is a marker of cholangiocytes and oval cells. Antigen A6 is present in cholangiocytes and oval cells; moreover, it is expressed in normal liver in single hepatocytes adjacent to the portal vein, in preneoplastic liver, in newly formed hepatocytes, and in certain hepatocarcinomas. Thus, antigen A6 is a marker of cholangiocytes, oval cells and of certain stages of hepatocyte differentiation. We also detected phenotypic heterogeneity of Gehring cells in terms of antigen A6 content. We have formulated problem of the relationship between A6-negative Gehring cells and liver stem cells. Both marker antigens are species-specific but are not specific for the liver. Antigen A6 is simultaneously a differentiation marker of cells belonging to the erythroid series. It is expressed in erythroblasts of fetal liver and is absent in erythroblasts of the yolk sac and erythrocytes. The relationship between antigen A6 and blood group antigens is discussed.  相似文献   

13.
Microspectrophotometric absorption measurements were used to determine the hemoglobin content of erythroid cells derived from the yolk sac during gestation of fetal C3H mice, from day 9 to day 15. Using the DNA content as a marker for the mitotic state between 2C and 4C phase, five successive cell generations and their mean hemoglobin contents were distinguished: 12 pg (pg, picogram = 10?12 gm). 22.2 pg, 37 pg, 50 pg and 56 pg. In the final state, nucleated erythrocytes contained 98 ± 22 pg hemoglobin. Erythroid cells derived from the liver were measured on day 15 of fetal gestation. The hemoglobin content of proerythroblasts was below 0.3 pg. The two cell generations in the basophilic state had 0.6 pg and 1.7 pg respectively. Polychromatic erythroblasts yielded a hemoglobin content of 5.1 pg in the first cell generation and 7.5 pg in the second one. Orthochromatic erythroblasts contained 8 pg, reticulocytes 12 pg and mature erythrocytes 28 ± 7 pg hemoglobin. Calculations based on these data suggest that the rate of total hemoglobin synthesis is similar in both yolk sac and liver erythropoiesis. The difference between the final hemoglobin content in nucleated erythrocytes of yolk sac origin and that in hepatic erythrocytes can be explained by the different cell generation times.  相似文献   

14.
Abstract. The A6 antigen - a surface-exposed component shared by mouse oval and biliary epithelial cells - was examined during prenatal development of mouse in order to elucidate its relation to liver progenitor cells. Immunohistochemical demonstration of the antigen was performed at the light and electron microscopy level beginning from the 9.5 day of gestation (26–28 somite pairs).
Up to the 11.5 day of gestation A6 antigen is found only in the visceral endoderm of yolk sac and gut epithelium, while liver diverticulum and liver are A6-negative. In the liver epithelial lineages A6 antigen behaves as a strong and reliable marker of biliary epithelial cells where it is found beginning from their emergence on the 15th day of gestation. It was not revealed in immature hepato-cytes beginning from the 16th day of gestation. However weak expression of the antigen was observed in hepato-blasts on 12–15 days of gestation possibly reflecting their ability to differentiate along either hepatocyte or biliary epithelial cell lineages.
Surprisingly, A6 antigen turned out to be a peculiar marker of the crythroid lineage: in mouse fetuses it distinguished A6 positive liver and spleen erythroblasts from A6 negative early hemopoietic cells of yolk sac origin. Moreover in the liver, A6 antigen probably distinguishes two waves of erythropoiesis: it is found on the erythroblasts from the 11.5 day of gestation onward while first extravascular erythroblasts appear in the liver on the 10th day of gestation. Both fetal and adult erythrocytes are A6-negative.
In the process of organogenesis A6 antigen was revealed in various mouse fetal organs. Usually it was found on plasma membranes of mucosal or ductular epithelial cells. Investigation of A6 antigen's physiological function would probably explain such specific localization.  相似文献   

15.
Our previous studies demonstrated roles of cyclic nucleotides in gamma-globin gene expression. We recently found that, upon activation of the cAMP pathway, expression of the gamma-globin gene is inhibited in K562 cells but induced in adult erythroblasts. Here we show that c-Myb, a proto-oncogene product that plays a role in cell growth and differentiation, is involved in the cAMP-mediated differential regulation of gamma-globin gene expression in K562 cells and primary erythroblasts. Our studies found that c-Myb is expressed at a high level in K562 cells compared to primary erythroblasts, and that c-Myb expression is further increased following the treatment with forskolin, an adenylate cyclase activator. The induction of gamma-globin gene expression was also inhibited in K562 cells by raising the levels of c-Myb expression. Importantly, forskolin-induced erythroid differentiation in K562 cells, as determined by the expression of glycophorins and CD71, suggesting that high-level expression of c-Myb may not be sufficient to inhibit the differentiation of erythroid cells. In contrast, c-Myb was not expressed in adult erythroblasts treated with forskolin and primary erythroblasts may lack the c-Myb-mediated inhibitory mechanism for gamma-globin gene expression. Together, these results show that the cAMP pathway blocks gamma-globin gene expression in K562 cells by increasing c-Myb expression and c-Myb plays a role in defining the mode of response of the gamma-globin gene to fetal hemoglobin inducers in erythroid cells.  相似文献   

16.
The effect of the hormone, erythropoietin, on cultures of erythroblasts derived from the livers of fetal C57BL/6J mice was examined. An increase both in the content and in the rate of synthesis of normal adult mouse globin chains was detected in hormone-treated cultures. The rate of protein synthesis by individual erythroblasts does not increase in response to the hormone, whereas the absolute number of hemoglobin-synthesizing cells does increase and accounts for the observed stimulation of hemoglobin synthesis. The principal effect of erythropoietin appears to be upon the population of immature erythroid precursor cells which persists in the presence of the hormone, the cells maintaining their ability to replicate, and their capacity to differentiate into hemoglobinizing erythroblasts. In the absence of hormone, already committed erythroblasts continue their development, but erythropoiesis is not sustained.  相似文献   

17.
We created a monoclonal antibody, designated EB1 (IgM, kappa), that reacts with erythroblasts by fusion of P3-X63-Ag8.653 with splenocytes of rats immunized with erythroblastic islands isolated from mice spleens. Western blotting revealed that EB1 reacted with the band 3 protein of the erythrocytic membrane. It stained erythrocytes and erythroblasts, forming clusters in the bone marrow, splenic red pulp, and fetal liver, but did not stain other tissues in the cryostat sections. The EB1 antigen was detected during dimethyl sulfoxide-induced differentiation of murine erythroleukemia cells. Immunoelectron microscopy revealed that the EB1 antigen was expressed from the basophilic erythroblasts during normal erythroid differentiation. Preferential segregation of the EB1 antigen on the cell membrane of the nucleating erythroblasts was not observed. These results suggest that EB1 is specific for erythrocyte band 3 protein and may be useful for studying erythroid cell differentiation.  相似文献   

18.
J B Whitney 《Cell》1977,12(4):863-871
A fetal-to-adult switch in the proportion of the mouse minor hemoglobin is described. Although mice have no fetal hemoglobin per se, the timing of this switch in the mouse suggests that the mechanism of its control may directly parallel that of the human switch from fetal to adult hemoglobin expression. The mouse minor hemoglobin is expressed only in strains with the "diffuse" allele for the beta chain complex locus. Fetal liver cells of these mice synthesize a much greater proportion of the betaminor globin chain that do adult hematopoietic cells. Consequently, circulating fetal erythrocytes carry a high level of the minor hemoglobin containing it. By the time of birth, a lowered proportion of betaminor is synthesized in the liver. This low proportion continues to be expressed during early erythroid maturation in the adult. The fetal-to-adult switch is the first indication that in normal mice, the two beta chain loci can be expressed noncoordinately. The similarity between the patterns of the decline of the minor hemoglobin in mice and of the disappearance of fetal hemoglobin in humans suggests that the minor hemoglobin in the "diffuse" mouse may function to some degree as a fetal hemoglobin in the period between the disappearance of the embryonic hemoglobins and the time of birth.  相似文献   

19.
To elucidate the process of fetal liver hematopoiesis, the relationships between stroma and hematopoietic cells involved in maturation were investigated. Cultured mouse fetal liver explants were established for morphological analysis of the interactions between fetal liver stroma and hematopoietic cells ex vivo. Fetal liver stroma comprised epithelial cells and macrophages, which occupied most of the culture surface. Macrophages proliferated extensively in primary culture, but almost disappeared after 3 passages. Close morphological and functional relationships were established between macrophages and hemopoietic cells, whereas epithelial cells did not interact with blood cells. Scanning electron microscopy revealed that macrophages were in close contact with erythroblasts and formed a three-dimensional network. In each erythroblastic island, 2-3 lymphocytes were also in contact with the macrophages; erythroblasts, lymphocytes and macrophages formed close, firm associations through their cytoplasmic membranes. This cell orientation was confirmed by transmission electron microscopy of fetal liver in vivo. In situ hybridization revealed that the macrophages expressed jagged-1, an important ligand of the Notch signaling system in hematopoiesis.  相似文献   

20.
Erythropoietin and stem cell factor are the key cytokines that regulate early stages of erythroid differentiation. However, it remains undetermined whether additional cytokines also play a role in the differentiation program. Here, we report that osteopontin (OPN) is highly expressed and secreted by erythroblasts during differentiation. We also demonstrate that OPN-deficient human and mouse erythroblasts exhibit defects in F-actin filaments, and addition of exogenous OPN to OPN-deficient erythroblasts restored the F-actin filaments in these cells. Furthermore, our studies demonstrate that OPN contributes to erythroblast proliferation. OPN knock-out male mice exhibit lower hematocrit and hemoglobin levels compared with their wild-type counterparts. We also show that OPN mediates phosphorylation or activation of multiple proteins including Rac-1 GTPase and the actin-binding protein, adducin, in human erythroblasts. In addition, we show that the OPN effects include regulation of intracellular calcium in human erythroblasts. Finally, we demonstrate that human erythroblasts express CD44 and integrins beta1 and alpha4, three known receptors for OPN, and that the integrin beta1 receptor is involved in transmitting the proliferative signal. Together these results provide evidence for signal transduction by OPN and contribution to multiple functions during the erythroid differentiation program in human and mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号