首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Lon蛋白酶,也叫蛋白酶La,是一种同质寡聚环状的ATP依赖的蛋白酶,在古生菌、原核生物和真核生物中高度保守。Lon蛋白酶属于AAA+超家族(与多种细胞活性相关的ATP酶)。自Lon蛋白酶被发现以来,许多研究表明Lon的蛋白酶活性对于维持细胞体内平衡、蛋白质量控制和代谢调控起着重要作用。该文综述了近年来Lon蛋白酶的研究进展,主要从Lon蛋白酶的结构和功能、与衰老和疾病的关系等方面进行了系统的阐述。  相似文献   

2.
线粒体是真核细胞的重要细胞器,在能量转换、细胞应激、脂质合成以及细胞凋亡中具有调节作用.许多线粒体蛋白酶参与蛋白质运输、加工激活和降解过程.其中, ATP依赖性的线粒体蛋白酶通过其AAA+结构域(ATP associated multiple activity domain, AAA domain)利用ATP水解来执行线粒体蛋白质质量控制和调节蛋白降解.线粒体蛋白酶活性的改变会导致线粒体功能障碍,从而导致多种人类疾病,包括心血管疾病、神经退行性疾病、衰老和肿瘤等.本文重点综述线粒体蛋白酶1(Lon protease 1, LONP1)、酪蛋白水解蛋白酶P(caseinolytic protease, ClpP)、m-AAA(IMM-embedded AAA face to matrix)和i-AAA(IMM-embedded AAA face to intermembrane space)蛋白酶四种ATP依赖性线粒体蛋白酶及其功能,并阐述其与人类疾病的相关性和临床意义.  相似文献   

3.
Lon蛋白酶是首个被鉴定的ATP依赖蛋白酶家族成员,在原核生物中发挥着降解错误折叠蛋白、维持胞内蛋白质平衡的作用。最近研究表明Lon蛋白还可以作为压力应激蛋白,参与降解多种转录调控因子和二元调控系统,改变细菌胞内的生理代谢过程以适应环境的改变。本文从Lon蛋白酶的结构、功能与上下游调控网络作一综述,旨在更全面清楚地了解ATP依赖蛋白酶的生理功能,以期为其胞内调控机制研究提供参考。  相似文献   

4.
Lon蛋白水解酶广泛存在于微生物以及动植物体内.它除了水解蛋白质的功能以外,还参与到细胞生理过程的调节当中.以嗜热栖热菌HB8(Thermus thermophilus HB8)的Lon蛋白酶(TTLon)及其两个片段TTlonL和TTlonS为研究对象,采用RT-PCR技术证明了TTLon在嗜热栖热菌HB8的逆境应答过程中发挥着重要作用,它的蛋白酶活性是受到Mg2+影响的,失去C端的TTlonL和TTlonS没有了蛋白水解酶活性和分子伴侣活性,但是它们仍然具有一定的ATP结合能力.  相似文献   

5.
Caseinolytic protease(ClpP)是一种包含丝氨酸蛋白酶催化三联体结构域的ATP依赖的蛋白水解酶,广泛存在于原核生物以及真核生物的线粒体和叶绿体中。它通常与AAA+家族的分子伴4gClpX结合形成ClpXV蛋白酶复合物,AAA+家族成员能利用水解ATP提供的能量将蛋白底物去折叠,随后将底物分子转移至ClpP蛋白酶的水解腔体进行降解。ClpP蛋白酶对细胞内蛋白质量控制及维持体内稳态起到至关重要的作用。该文综述了近年来有关ClpP蛋白酶在结构、功能以及与细菌毒力的关系和有关药物开发等方面的研究。  相似文献   

6.
从热处理的番茄叶cDNA文库中分离到一个全长为2213-bp的fisH基因。该基因包括一个2019-bp的读码框,推测的蛋白前体定位到叶绿体中,序列中存在AAA结构域和Zn^2+结合结构域等已知的金属蛋白酶PtsH家族的特征结构域。在已克隆的基因中,该ftsH与拟南芥ftsH6最近源,被命名为LefisH6(Lycopersicon esculentum filamentation temperature-sensitive H6)。体外蛋白酶活性分析结果表明,纯化的FtsH具有蛋白水解活性,能降解酪蛋白但不降解BSA;突变的FtsH(Zn^2+结合结构域中的谷氨酸Glu^472突变为谷氨酰胺Gln)失去了体外蛋白酶活性。Southern杂交结果表明,该基因在番茄基因组中是单拷贝;Northern和Western杂交均表明该基因表达被热诱导,但其表达不被低温、干旱、盐胁迫、高光等胁迫调节。首次证明了高等植物中存在能被热诱导表达的ftsH基因。  相似文献   

7.
线粒体丝氨酸蛋白酶Omi/HtrA2与细胞凋亡   总被引:4,自引:0,他引:4  
Wang XL  Wang J  Lv XP 《生理科学进展》2006,37(3):285-288
Omi/HtrA2是一种线粒体丝氨酸蛋白酶,具有修复、降解线粒体中折叠错误的蛋白质的作用,并可以通过破坏caspase与X染色体连锁凋亡抑制蛋白(XIAP)之间的相互作用和直接利用其自身具有的蛋白酶活性引起细胞凋亡。本文介绍了Omi/HtrA2的结构、生物学作用、参与细胞凋亡的机制及其在某些疾病中的作用。  相似文献   

8.
蛋白酶B.P与国内外几种试剂蛋白酶比较,证明其酶种单一,只含有蛋白酶,不含DNA酶和RNA酶,与蛋白酶K和蛋白酶E相似。蛋白酶B.P除含有碱性蛋白酶外还含有较高的中性蛋白酶活性,它可以广泛地水解多种天然蛋白,应用于微生物细胞蛋白的水解,提取DNA和RNA,还可水解叶肉细胞蛋白,提取叶绿体DNA,是我国第一个碱性生化试剂蛋白酶。  相似文献   

9.
丝氨酸蛋白酶是丙型肝炎病毒重要的功能蛋白和药物作用靶点,其通过分子内(cis)和分子间(trans)方式催化水解前体蛋白,释放病毒功能蛋白。目的:为深入研究病毒蛋白酶活性和抑制剂鉴定需要,实验研究参照丙型肝炎病毒1a亚型菌株蛋白酶天然底物的氨基酸序列特点,设计了一段包含两个天然底物酶切位点的小分子多肽2S,并进行了原核表达。方法:利用PCR方法,合成2S小分子多肽基因,目的基因两端引入BamH I和EcoR I两个限制性酶切位点,双酶切后将基因与表达载体pGEX-4T-2重组,转化大肠杆菌DH5α,经化学诱导进行GST融合蛋白表达,通过亲和层析柱纯化目的蛋白。纯化的GST 2S融合蛋白在体外反应系统进行酶切鉴定,SDS-PAGE和ELISA鉴定酶切结果。结果:PCR合成的小分子底物多肽2S基因,经与表达载体重组后测序,证实基因序列正确。采用0.5mmol/L浓度的IPTG诱导工程菌过夜,获得表达的目的蛋白,经分离纯化得到融合蛋白GST-2S。GST-2S在体外磷酸盐缓冲系统中与丝氨酸蛋白酶反应,15%SDS-PAGE鉴定酶切产物,证实融合蛋白底物条带明显消失,ELISA结果同样说明融合蛋白的底物活性。结论:含有两个天然底物酶切位点的小分子多肽可以替代病毒天然底物,实验结果为丙型肝炎病毒丝氨酸蛋白酶活性研究和酶抑制剂研究奠定了方法学基础。  相似文献   

10.
酶解法制备草鱼抗氧化多肽工艺的建立   总被引:1,自引:0,他引:1  
目的:筛选优化合适的可用于水解草鱼蛋白制备活性多肽的蛋白酶制剂及其工艺.方法:选取不同特性来源的商品化蛋白酶制剂与实验室分离的枯草蛋白酶BPN,对比分析它们在水解草鱼蛋白过程中的水解度变化,及其酶解产物的抗氧化活性.结果:大多数蛋白酶在水解反应最初的60min内,水解度迅速增加,之后2h内曲线变化不大.其中细菌来源的水解蛋白酶水解能力最强,其2h水解产物水解度可达15.17%;木瓜蛋白酶水解产物的抗氧化活性较强,经测定其DPPH清除能力为96.24%.结论:不同特性的蛋白酶水解草鱼蛋白的水解速度和产物的活性成分具有明显差异,总的来说,木瓜蛋白酶在草鱼蛋白加工中制备活性多肽是一个比较理想的选择.  相似文献   

11.
Rats bearing the Zajdela hepatoma tumor and T3-treated hypothyroid rats were used to study the role of protein degradation in the process of mitochondrial biogenesis. It was shown that the activity, protein and mRNA levels of the ATP-dependent Lon protease increased in rapidly growing Zajdela hepatoma cells. The increase in the rate of mitochondrial biogenesis by thyroid hormone was similarly accompanied by enhanced expression of the Lon protease. The results imply that mitochondrial biogenesis in mammalian cells is, at least partially, regulated by the matrix Lon protease.  相似文献   

12.
The rat homologue of a mitochondrial ATP-dependent protease Lon was cloned from cultured astrocytes exposed to hypoxia. Expression of Lon was enhanced in vitro by hypoxia or ER stress, and in vivo by brain ischemia. These observations suggested that changes in nuclear gene expression (Lon) triggered by ER stress had the potential to impact important mitochondrial processes such as assembly and/or degradation of cytochrome c oxidase (COX). In fact, steady-state levels of nuclear-encoded COX IV and V were reduced, and mitochondrial-encoded subunit II was rapidly degraded under ER stress. Treatment of cells with cycloheximide caused a similar imbalance in the accumulation of COX subunits, and enhanced mRNA for Lon and Yme1, the latter another mitochondrial ATP-dependent protease. Furthermore, induction of Lon or GRP75/mtHSP70 by ER stress was inhibited in PERK (-/-) cells. Transfection studies revealed that overexpression of wild-type or proteolytically inactive Lon promoted assembly of COX II into a COX I-containing complex, and partially prevented mitochondrial dysfunction caused by brefeldin A or hypoxia. These observations demonstrated that suppression of protein synthesis due to ER stress has a complex effect on the synthesis of mitochondrial-associated proteins, both COX subunits and ATP-dependent proteases and/or chaperones contributing to assembly of the COX complex.  相似文献   

13.
Steroidogenic acute regulatory protein (StAR) is a vital mitochondrial protein promoting transfer of cholesterol into steroid making mitochondria in specialized cells of the adrenal cortex and gonads. Our previous work has demonstrated that StAR is rapidly degraded upon import into the mitochondrial matrix. To identify the protease(s) responsible for this rapid turnover, murine StAR was expressed in wild-type Escherichia coli or in mutant strains lacking one of the four ATP-dependent proteolytic systems, three of which are conserved in mammalian mitochondria-ClpP, FtsH, and Lon. StAR was rapidly degraded in wild-type bacteria and stabilized only in lon (-)mutants; in such cells, StAR turnover was fully restored upon coexpression of human mitochondrial Lon. In mammalian cells, the rate of StAR turnover was proportional to the cell content of Lon protease after expression of a Lon-targeted small interfering RNA, or overexpression of the protein. In vitro assays using purified proteins showed that Lon-mediated degradation of StAR was ATP-dependent and blocked by the proteasome inhibitors MG132 (IC(50) = 20 microm) and clasto-lactacystin beta-lactone (cLbetaL, IC(50) = 3 microm); by contrast, epoxomicin, representing a different class of proteasome inhibitors, had no effect. Such inhibition is consistent with results in cultured rat ovarian granulosa cells demonstrating that degradation of StAR in the mitochondrial matrix is blocked by MG132 and cLbetaL but not by epoxomicin. Both inhibitors also blocked Lon-mediated cleavage of the model substrate fluorescein isothiocyanate-casein. Taken together, our former studies and the present results suggest that Lon is the primary ATP-dependent protease responsible for StAR turnover in mitochondria of steroidogenic cells.  相似文献   

14.
15.
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.  相似文献   

16.
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000muM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.  相似文献   

17.
Lon protease, which plays a major role in degradation of abnormal proteins inEscherichia coli, was overproduced and efficiently purified using the maltose-binding protein (MBP) fusion vector. The MBP-Lon fusion protein was expressed in a soluble form inE. coli and purified to homogeneity by amylose resin in a single step. Lon protease was split from MBP by cleaving a fusion point between MBP and Lon with factor Xa and purified by amylose resin and subsequent gel filtration. In this simple method, Lon protease was purified to homogeneity. Purified MBP-Lon fusion protein and Lon protease showed similar breakdown activities with a peptide (succinyl-l-phenylalanyl-l-leucyl-phenylalanyl--d-methoxynaphthylamide) and protein (-casein) in the presence of ATP. Therefore, the gene-fusion approach described in this study is useful for the production of functional Lon protease. MBP-Lon fusion protein, which both binds to the amylose resin and has ATP-dependent protease activity, should be especially valuable for its application in the degradation of abnormal proteins by immobilized enzymes.  相似文献   

18.
Lon, also known as the protease La, is a homo-oligomeric ATP-dependent protease, which is highly conserved in archaea, eubacteria and eukaryotic mitochondria and peroxisomes. Since its discovery, studies have shown that Lon activity is essential for cellular homeostasis, mediating protein quality control and metabolic regulation. This article highlights the discoveries made over the past decade demonstrating that Lon selectively degrades abnormal as well as certain regulatory proteins and thus plays significant roles in maintaining bacterial and mitochondrial function and integrity. In addition, Lon is required in certain pathogenic bacteria, for rendering pathogenicity and host infectivity. Recent research endeavors have been directed toward elucidating the reaction mechanism of the Lon protease by different biochemical and structural biological techniques. In this mini-review, the authors survey the diverse biological roles of Lon, and also place special emphasis on recent findings that clarify the mechanistic aspects of the Lon reaction cycle.  相似文献   

19.
The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA). However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号