首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three different kinds of Phanerochaete chrysosporium (NaOH‐treated, heat‐inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50–700 mg/L. Maximum biosorption capacities of NaOH‐treated, heat‐inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH‐treated > heat‐inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH‐treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption‐desorption cycles without any considerable loss in biosorption capacity. The alkali‐treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater.  相似文献   

2.
Decolourisation of reactive dyes Drimarene Blue X3LR and Remazol Brilliant Blue R by white rot fungi Funalia trogii was studied under static conditions. The effect of various conditions such as mycelial age, initial dye and glucose concentrations on decolourisation were also investigated. Decolourisation activity of F. trogii was compared with Phanerochaete chrysosporium known as test microorganism. It was found that 7-day-old cultures were more effective than 5-day-old cultures of F. trogii for decolourisation of these dyes. Decolourisations by F. trogii of both dyes were increased with glucose concentration decreasing. In contrast, decolourisations by P. chrysosporium were decreased. F. trogii decolourised 92–98% of both dyes within 4–10 h. However, P. chrysosporium partially decolourised (11–20%) these dyes during 10days incubation period under the same conditions.  相似文献   

3.
The risk of heavy metal contamination in domestic water causes serious health and environmental problems. Biosorption has been considered as an efficient and alternative way for treatment of heavy metal–contaminated wastewater. The potentials of dried charophytes, Chara aculeolata and Nitella opaca, to biosorb lead (Pb), cadmium (Cd), and zinc (Zn) from synthetic solutions and municipal wastewater were investigated. The efficiency of metal removal was studied under varied conditions in different sorbent dosages, pH, and contact times. Biosorption isotherm and kinetics were used to clarify heavy metal preference and biosorption mechanism. C. aculeolata and N. opaca performed well in the biosorption of all three metal ions, with preference towards Pb, followed by Cd and Zn, in the single-metal solutions. Pb adsorption onto algal biomass followed first-order rate kinetics (N. opaca) and intraparticle diffusion (C. aculeolata and N. opaca). These results indicated physical adsorption process between Pb ions and both algal biomasses. Cd and Zn biosorption kinetics fitted the second-order rate model, indicating chemical adsorption between metal ions and both algae. The experimental data of three-metal biosorption fitted well to Langmuir isotherm model, suggesting that the metal ion adsorption occurred in a monolayer pattern on a homogeneous surface. C. aculeolata exhibited slightly higher maximum uptake of Pb, Cd, and Zn (105.3 mgPb/g, 23.0 mgCd/g, 15.2 mgZn/g) than did N. opaca (104.2 mgPb/g, 20.5 mgCd/g, 13.4 mgZn/g). In multi-metal solutions, antagonistic effect by metal competition was observed. The ability of charophytes to remove Pb and Zn was high in real municipal water (81–100%). Thus, the charophytic biomass may be considered for the treatment of metal contamination in municipal wastewater.  相似文献   

4.
This study was undertaken for the possibility of application of pre-grown pellets for biotechnological treatment of dyes and textile industry waste waters. Mycelial pellets of five different white rot fungi were tested for their dye decolorization activity. The pellets of Funalia trogii, Phanerochaete chrysosporium and Trametes versicolor were determined as the most effective ones. The decolorization ability of viable pellets was compared with the decolorization (adsorption) ability of dead pellets during repeated batch studies. Astrazon Black dye was decolorized effectively, about 90%, by viable pellets of all fungi during the first use. Viable F. trogii pellets were found as the most effective pellets. Upon pellet treatment not only a high decolorization but also reduced toxicity (antimicrobial activity) of the Astrazon Black dye was recorded. This type of decolorization activity with commercial or crude laccase was partially observed. Growing cells of F. trogii in batch system showed lower efficiency in color removal of mixed dyes compared to the pre-grown pellets in repeated batch system. The results in this study showed that mycelial pellets could effectively be used as an alternative to traditional physicochemical processes.  相似文献   

5.
In the present study the potential of a biofilter containing a mixture of dried micro-algal/bacterial biomass for removing heavy metals (Cu2+, Cd2+) from dilute electroplating waste was tested. The biomass was produced in an artificial stream using the effluent of a municipal waste water treatment plant as a nutrient source, with the additional benefit of reducing phosphorus and nitrogen loadings. Baseline batch experiments determined that optimum adsorption for both metals (80–100%) were achieved with the deionized-H2O conditioned biomass at initial pH 4.0. Other biosorption variables (contact time, initial metal concentration) were also tested. Biosorption data were fitted successfully by the Langmuir model and results showed a high affinity of the used biomass for both metals (qmax 18–31 mg metal/g.d.w). Flow-through column experiments containing Ca-alginate/biomass beads showed that metal adsorption depends also on flow-rate and volume of treated waste. Desorption of both metals with weak acids was very successful (95–100%) but the regeneration of the columns was not achieved due to the destabilization of beads.  相似文献   

6.
A comparative study on heavy metal biosorption characteristics of some algae   总被引:12,自引:0,他引:12  
The biosorption of copper(II), nickel(II) and chromium(VI) from aqueous solutions on dried (Chlorella vulgaris, Scenedesmus obliquus and Synechocystis sp.) algae were tested under laboratory conditions as a function of pH, initial metal ion and biomass concentrations. Optimum adsorption pH values of copper(II), nickel(II) and chromium(VI) were determined as 5.0, 4.5 and 2.0. respectively, for all three algae. At the optimal conditions, metal ion uptake increased with initial metal ion concentration up to 250 mg l−1. Experimental results also showed the influence of the alga concentration on the metal uptake for all the species. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of copper(II), nickel(II) and chromium(VI) by all the algal species.  相似文献   

7.
8.
Agitation, temperature, inoculum size, initial pH and pH of buffered medium affected the decolorization of Orange II dye byCoriolus versicolor andFunalia trogii. The optimum temperature and initial pH value for decolorization were 30°C and 6.5–7.0, respectively; pH 4.5 was the most efficient in buffered cultures. High decolorization extents were reached at all agitation rates. At an inoculum size of more than 1 mL, the extent of decolorization changed only slightly. High extents were obtained using immobilized fungi at repeated-batch mode.  相似文献   

9.
Fungi including Aspergillus and Penicillium, resistant to Ni2+, Cd2+, and Cr6+ were isolated from soil receiving long-term application of municipal wastewater mix with untreated industrial effluents of Aligarh, India. Metal tolerance in term of minimum inhibitory concentration (MIC) was 125-550 microg/ml for Cd, 300-850 microg/ml for Ni and 300-600 microg/ml for Cr against test fungi. Two isolates, Aspergillus niger and Penicillium sp. were tested for their Cr, Ni and Cd biosorption potential using alkali treated, dried and powdered mycelium. Biosorption experiment was conducted in 100 ml of solution at three initial metal concentrations i.e., 2, 4 and 6 mM with contact time (18 hr) and pretreated fungal biomass (0.1g) at 25 degrees C. Biosorption of all metals was found higher at 4 mM initial metal concentration as compared to biosorption at 2 and 6 mM concentrations. At 4 mM initial metal concentration, chromium biosorption was 18.05 and 19.3 mg/g of Aspergillus and Penicillium biomasses, respectively. Similarly, biosorption of Cd and Ni ions was also maximum at 4 mM initial metal concentration by Aspergillus (19.4 mg/g for Cd and 25.05 mg/g of biomass for Ni) and Penicillium (18.6 mg/g for Cd and 17.9 mg/g of biomass for Ni). In general, biosorption of metal was influenced by initial metal concentration and type of the test fungi. The results indicated that fungi of metal contaminated soil have high level of metal tolerance and biosorption properties.  相似文献   

10.
11.
Biosorption of copper by Pseudomonas cepacia was found to be dependent on added copper concentration. Copper uptake by the cells was rapid over the range of copper concentrations tested and complete within the first 10 min of incubation time. The effect of pH on copper uptake by P. cepacia was determined using overlapping buffers over the pH range 3–8, and copper biosorption from a 10 mM copper solution was greatest at pH 7. Copper uptake (measured by analysis of cell digests) was unaffected by cyanide and azide (up to 30 mM) and by incubation of cells with a 10 mM copper solution at 4 °C. Evidence from these results suggested that copper uptake by P. cepacia cells involves surface binding and not intracellular accumulation by active transport. Biosorption of copper by various Pseudomonas isolates from metal-contaminated environments agreed well with copper biosorption by Pseudomonas strains from the National Collection of Type Cultures (NCTC).  相似文献   

12.
The removal of chromium, cadmium and copper, toxic metals of high environmental priority due to their toxicity, from dilute aqueous solutions has been studied in the present work, applying a dead exopolysaccharide producing bacterium, Ochrobactrum anthropi, isolated from activated sludge. Particularly, the effect of pH, metal concentration and the effects of contact time were considered. Optimum adsorption pH values of chromium(VI), cadmium(II) and copper(II) were 2.0, 8.0 and 3.0 respectively. Experimental results also showed the influence of initial metal concentration on the metal uptake for dried biomass. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of chromium(VI), cadmium(II) and copper(II) by O. anthropi.  相似文献   

13.
Phanerochaete chrysosporium has been recognised as an effective bioremediation agent due to its unique degradation to xenobiotic and biosorption ability to heavy metals. However, few studies have focused on the simultaneous removal of heavy metals and organic pollutants. The aim of this work was to study the feasibility of simultaneous cadmium removal and 2,4-dichlorophenol (2,4-DCP) degradation in P. chrysosporium liquid cultures. The removal efficiencies were pH dependent and the maximum removal efficiencies were observed at pH 6.5 under an initial cadmium concentration of 5 mg/L and an initial 2,4-DCP concentration of 20 mg/L. The removal efficiencies for cadmium and 2,4-DCP reached 63.62% and 83.90%, respectively, under the optimum conditions. The high production levels of lignin peroxidase (7.35 U/mL) and manganese peroxidase (8.30 U/mL) resulted in an increase in 2,4-DCP degradation. The protein content decreased with increasing cadmium concentration. The surface characteristics and functional groups of the biomass were studied by scanning electron microscopy and a Fourier-transformed infrared spectrometer. The results showed that the use of P. chrysosporium is promising for the simultaneous removal of cadmium and 2,4-DCP from liquid media.  相似文献   

14.
Abstract

This study evaluates the biosorption of copper by aerobic biomass that was selected from surface waters of the San Pedro River in Sonora, Mexico. Using a batch system, 73% biosorption of copper was obtained in 75 minutes. Continuous biosorption assays were carried out for 133 days in an ascending flow aerobic reactor packed with zeolite (AFAR-PZ) that was inoculated with a bacterial consortium. Strains were grown until 1g L?1 of biomass was obtained. Tests using continuous biosorption were performed as follows: (i) the addition of 50 mg Cu2+ L?1 without recirculation of biomass; (ii) the addition of 20 mg Cu2+ L?1without recirculation of biomass; and (iii) the biomass were recirculated with the addition of 20 mg Cu2+ L?1 to pH 3 to 4. The fourth and fifth assays varied pH between 4 and 5, with 20 mg Cu2+ L?1and the biomass recirculated. Biosorption capacity of the first and second assays was 96% on the first day of experimentation. During the third trial 97% of biosorption was obtained during 6 days and the process was improved by varying the pH. Copper biosorption equilibrium was investigated under the same operating conditions. Langmuir adsorption isotherms were used to fit experimental data. The biosorption capacity of aerobic biomass was 3.08 mmol g?1. It was demonstrated that this biomass is capable of biosorbing copper and this method has potential for the treatment of industrial effluents contaminated with heavy metals.  相似文献   

15.
Summary Biosorption of heavy metals by gram-positive, non-pathogenic and non-toxicogenic Paenibacillus polymyxa P13 was evaluated. Copper was chosen as a model element because it is a pollutant originated from several industries. An EPS (exopolysaccharide)-producing phenotype exhibited significant Cu(II) biosorption capacity. Under optimal assay conditions (pH 6 and 25 °C), the adsorption isotherm for Cu(II) in aqueous solutions obeyed the Langmuir model. A high q value (biosorption capacity) was observed with whole cells (qmax=112 mgCu g−1). EPS production was associated with hyperosmotic stress by high salt (1 M NaCl), which led to a significant increase in the biosorption capacity of whole cells (qmax=150 mgCu g−1). Biosorption capacity for Cu(II) of the purified EPS was investigated. The maximum biosorption value (q) of 1602 mg g−1 observed with purified EPS at 0.1 mg ml−1 was particularly promising for use in field applications.  相似文献   

16.
Biosorption of each of the heavy metals, copper(II) and cobalt(II) by crab shell was investigated in this study. The biosorption capacities of crab shell for copper and cobalt were studied at different particle sizes (0.456-1.117 mm), biosorbent dosages (1-10 g/l), initial metal concentrations (500-2000 mg/l) and solution pH values (3.5-6) in batch mode. At optimum particle size (0.767 mm), biosorbent dosage (5 g/l) and initial solution pH (pH 6); crab shell recorded maximum copper and cobalt uptakes of 243.9 and 322.6 mg/g, respectively, according to Langmuir model. The kinetic data obtained at different initial metal concentrations indicated that biosorption rate was fast and most of the process was completed within 2h, followed by slow attainment of equilibrium. Pseudo-second order model fitted the data well with very high correlation coefficients (>0.998). The presence of light and heavy metal ions influenced the copper and cobalt uptake potential of crab shell. Among several eluting agents, EDTA (pH 3.5, in HCl) performed well and also caused low biosorbent damage. The biosorbent was successfully regenerated and reused for five cycles.  相似文献   

17.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

18.
Lead biosorption by different morphologies of fungus Mucor indicus   总被引:1,自引:0,他引:1  
Biosorption characteristics of Pb+2 ions from aqueous solution were investigated using fungus Mucor indicus biomass treated with NaOH. Biosorption was measured as a function of biomass morphology, pH, biomass concentration, contact time, and metal concentration. The morphology of M. indicus biomass was manipulated towards filamentous or yeast-like forms. The highest and lowest biosorption capacities were observed for purely filamentous and yeast-like forms, respectively. Models of Langmuir, Freundlich, Temkin, and Scachard were applied to describe adsorption isotherm and fitted appropriately. Biosorption kinetics was successfully described using Ho’s pseudo-second-order model. Maximum and minimum values of biosorption capacity of Pb2+ were 22.1 and 12.1 mg g−1 for purely filamentous and yeast-like morphologies, respectively. Increasing pH resulted in higher biosorption of Pb+2 ions up to pH 5.5. Biosorption capacity of individual Pb+2 ions was reduced in the presence of other metal ions in bi- or multi-metal ion experiments. Metal ions adsorption by the biomass could be eluted effectively with HNO3.  相似文献   

19.
Biosorption of metal ions (Li+, Ag+, Pb2+, Cd2+, Ni2+, Zn2+, Cu2+, Sr2+, Fe2+, Fe3+ and Al3+) by Rhizopus nigricans biomass was studied. It was shown that metal uptake is a rapid and pH-dependent process, which ameliorates with increasing initial pH and metal concentrations. Different adsorption models: Langmuir, Freundlich, split-Langmuir and combined nonspecific-Langmuir adsorption isotherm were applied to correlate the equilibrium data. The maximum biosorption capacities for the individual metal ions were in the range from 160 to 460 mol/g dry weight. Scatchard transformation of equilibrium data revealed diverse natures of biomass metal-binding sites. The binding of metals was also discussed in terms of the hard and soft acids and bases principle. The maximum biosorption capacities and the binding constant of R. nigricans were positively correlated with the covalent index of metal ions.The following types of waste microbial biomass originating as by-products from industrial bioprocesses were tested for biosorption of metal ions: Aspergillus terreus, Saccharomyces cerevisiae, Phanerochaete chrysosporium, Micromonospora purpurea, M. inyoensis and Streptomyces clavuligerus. The determined maximum biosorption capacities were in the range from 100 to 500 mol/g dry weight. The biosorption equilibrium was also represented with Langmuir and Freundlich sorption isotherms.  相似文献   

20.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号