首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.  相似文献   

3.
4.
The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.  相似文献   

5.
Effectively targeting cancer stem cells to treat cancer has great therapeutic prospects. However, the effect of microRNA miR-17/MKL-1 on gastric cancer stem cells has not been studied yet. This study preliminarily explored the mechanism of miR-17/MKL-1 in gastric cancer stem cells. Many previous reports have indicated that microRNA and EMT regulated cancer stem cell characteristics, and miR-17 and MKL-1 were involved as a critical gene in migration and invasion in the EMT pathway. Through RT-PCR, Western Blot, flow cytometry, immunofluorescence, sphere formation xenograft tumor assays and drug resistance, the role of miR-17-5p and MKL-1 on promoting stem cell-like properties of gastric cancer were verified in vivo and vitro. Next, MKL-1 targets CD44, EpCAM, and miR -17-5p promoter verified by luciferase assay and ChIP. Besides, the TCGA database analysis found that both miR-17-5p and MKL-1 increased in gastric cancer, and the prognostic survival of the MKL-1 high expression group was reduced. It is found that MKL-1 promotes expression by targeting miR-17, CD44 and EpCAM promoters. Besides, the TCGA database analysis found that both miR-17-5p and MKL-1 increased in gastric cancer, and the prognostic survival of the MKL-1 high expression group was reduced. These findings reveal new regulatory signaling pathways for gastric cancer stem cells, thus it give new insights on potential early diagnosis and/or molecular therapy for gastric cancer.  相似文献   

6.
Many studies have highlighted the importance of movement-induced mechanical stimuli in the development of functional synovial joints. However, such phenomenological results have failed to provide a full explanation of the mechanism essential for the morphogenesis of fluid-filled joint cavities. We have previously demonstrated that the large glycosaminoglycan hyaluronan (HA), in association with its principal cell surface receptor CD44, plays a major role during the morphogenesis of chick joints. We have taken cells from the surface of recently cavitated joints and subjected them to a brief period of dynamic mechanical strain (3800 microE for 10 min) and measured changes in HA synthesis/release, CD44 expression and HA synthase gene expression. In addition, we subjected cells to matrix depletion prior to the application of mechanical strain in order to examine any potential modulatory function of the ECM during the cell response to strain. Removal of the cell-associated HA-containing matrix with hyaluronidase significantly increased the release of HA into tissue culture media over 24 h and is associated with increased CD44 expression, alterations in HA synthase gene expression and enhanced binding of HA to the cell surface. Such changes in HA release were shown to be blocked by addition of exogenous HA and synergistically enhanced by the application of dynamic mechanical strain. These results show that cell-matrix interactions modify the response of embryonic cells to mechanical strain and provide further insight into the mechano-dependent mechanism of joint cavity morphogenesis.  相似文献   

7.
8.
9.
10.
目的:研究高糖诱导的内皮细胞损伤微小RNA(microRNA,miRNA)的表达变化。方法:常规培养的人冠状动脉内皮细胞,利用不同浓度D-葡萄糖溶液(0 mmol/L、5 mmol/L、15 mmol/L和25 mmol/L),诱导刺激24 h后分别用CCK-8法和流式细胞术检测其生长活力和凋亡水平。收集细胞总RNA,利用实时定量PCR(Quantitative real-time PCR,q RT-PCR)检测miRNA的表达变化,同时利用TargetScan、PicTar等生物信息学预测软件预测可能的靶基因。结果:高糖溶液(25 mmol/L)刺激内皮细胞后,细胞生长活力明显降低,为对照组的67.5%(P0.01),凋亡水平为对照组的4.5倍(P0.01)。QRT-PCR结果显示miRNA的表达出现了明显的紊乱,其中miR-451、miR-504、miR-302d、miR-18b*、miR-198、miR-328和miR-517c明显下调,miR-29c、miR-100*、miR-137、miR-660和miR-217明显上调(P0.05)。靶基因预测发现miR-217和miR-451可能调控内皮细胞功能相关的多个基因的表达。结论:在高糖诱导的内皮细胞损伤中,miRNA表达紊乱提示其可能参与内皮细胞功能。  相似文献   

11.
12.
CD44 is a principal cell-surface receptor for hyaluronan (HA). Up-regulation of CD44 is often associated with morphogenesis and tumor invasion. On the contrary, reduction of cell-cell adhesion due to down-regulation of E-cadherin is associated with the invasive and metastatic phenotype of carcinomas. In our current study, we investigated the functional relationship between CD44 and E-cadherin. We established an inverse correlation between CD44 and E-cadherin indicating that the cells expressing higher levels of E-cadherin display weaker binding affinity between CD44 and HA. By using TA3 murine mammary carcinoma (TA3) cells, which display CD44-dependent HA binding, branching morphogenesis, and invasion, we demonstrated an inverse functional relationship between CD44 and E-cadherin by transfecting exogenous E-cadherin into the cells. Our results showed that increased expression of E-cadherin in TA3 cells, but not ICAM-1, weakens the binding between CD44 and HA and blocks spreading of the cells on HA substratum and CD44-mediated branching morphogenesis and tumor cell invasion. The results reported here demonstrated for the first time that E-cadherin negatively regulated CD44-HA interaction and CD44 function and suggested that balanced function of CD44 and E-cadherin may be essential for normal epithelial cell functions, and imbalanced up-regulation of CD44 function and/or down-regulation of E-cadherin function likely contributes to tumor progression.  相似文献   

13.
Erectile dysfunction (ED) is a common comorbidity in males with diabetes. In this study, we aimed to investigate how lncRNA-MIAT affects ED in diabetes and the involved mechanism. Microarray analysis was performed to screen ED-related differentially expressed genes, regulatory microRNA (miR) and long noncoding RNA (lncRNA). Highly expressed lipoprotein lipase (LPL) was identified, and subsequently miR-328a-5p and lncRNA-MIAT were determined. Diabetes was induced by streptozotocin in rats, and diabetic rats with ED were selected. Vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) were cocultured. The siRNA against lncRNA-MIAT, miR-328a-5p mimic and overexpression vector of LPL were transfected to investigate the specific effects of miR-328a-5p, lncRNA-MIAT and LPL on ED in diabetes. The expression of LPL, lncRNA-MIAT and miR-328a-5p in the serum of diabetic patients was measured. Increased LPL and lncRNA-MIAT and reduced miR-328a-5p were observed in diabetic patients. In addition, ED led to upregulated LPL and lncRNA-MIAT and downregulated miR-328a-5p in serum of diabetic patients and VSMCs of diabetic rats, especially in those with ED. LncRNA-MIAT directly regulated miR-328a-5p, which directly targeted LPL. LncRNA-MIAT upregulated LPL by acting as a ceRNA of miR-328a-5p. Silencing of lncRNA-MIAT and LPL or miR-328a-5p overexpression reduced VEC apoptosis and increased cell proliferation. In addition, an increased intracavernosal pressure (ICP)/mean arterial pressure (MAP) ratio was noted in the corpus cavernosum of rats and inhibited VEC injury. Taken together, our data demonstrated that depleted lncRNA-MIAT suppressed LPL by increasing miR-328a-5p, thereby inhibiting VEC injury to attenuate ED in diabetic rats.  相似文献   

14.
Previous research has shown that microRNA 506 (miR-506) functions as an essential modulator in the development of many biological reactions, including multiple cancers. However, its involvement in cutaneous squamous cell carcinoma (CSCC) has been rarely reported. In the present work, we investigated the molecular mechanism and function of miR-506 in the regulation of CSCC cell viability and metastasis (migration and invasion). We observed that miR-506 expression was upregulated in both CSCC tissues and cell lines, and that decreased miR-506 expression led to repressed tumorigenesis in CSCC cells. Furthermore, flow cytometry revealed that the depletion of miR-506 resulted in decreased proliferation and increased apoptotic levels in CSCC cells. Meanwhile, it was found that miR-506 decreased CSCC cell migration and invasion in vitro. The dual-luciferase reporter assay also revealed that miR-506 targets the 3′-UTRs of p65 and Laminin C1 (LAMC1) for silencing. Silencing of p65 expression counteracted the pro-apoptotic influence of miR-506 depletion in CSCC cells, while inhibition of LAMC1 expression restored the migration and invasion properties of the CSCC cells. Therefore, the results provide evidence for the need to probe the biological and molecular mechanisms behind the development and progression of CSCC and may lead to novel treatment CSCC strategies.  相似文献   

15.
Cheng W  Liu T  Wan X  Gao Y  Wang H 《The FEBS journal》2012,279(11):2047-2059
In ovarian cancer, CD44(+) /CD117(+) stem cells, also known as cancer-initiating cells (CICs), are highly proliferative, have a low degree of differentiation, and are resistant to chemotherapeutics. Therefore, the CD44(+) /CD117(+) subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the role of microRNA-199a (miR-199a) in ovarian cancer stem cells. Luciferase reporter gene assays confirmed that miR-199a targets CD44 via an miR-199a-binding site in the 3'-UTR. CD44(+) /CD117(+) ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometric sorting. miR-199a was cloned and transfected into ovarian CICs. CD44 mRNA and protein expression was significantly decreased in miR-199a-transfected ovarian CICs as compared with miR-199a mutant-transfected and untransfected cells. Cell cycle analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide proliferation assays, the colony formation assay and the transwell migration assay indicated that miR-199a significantly affected cell cycle regulation and suppressed the proliferation and invasive capacity of ovarian CICs in?vitro. miR-199a significantly increased the chemosensitivity of ovarian CICs to cisplatin, pacitaxel, and adriamycin, and reduced mRNA expression of the multidrug resistance gene ABCG2 as compared with miR-199a mutant-transfected and untransfected cells. The expression of stemness markers was also significantly reduced in miR-199a-transfected CICs as compared with miR-199a mutant-transfected and untransfected ovarian cells. Furthermore, xenograft experiments confirmed that miR-199a suppressed the growth of xenograft tumors formed by ovarian CICs in?vivo. Thus, expression of endogenous mature miR-199a may prevent tumorigenesis in human ovarian cancer by regulating expression of its target gene CD44.  相似文献   

16.
Atherosclerosis has been recognized as a chronic inflammatory disease, which can harden the vessel wall and narrow the arteries. MicroRNAs exhibit crucial roles in various diseases including atherosclerosis. However, so far, the role of miR-328 in atherosclerosis remains barely explored. Therefore, our study concentrated on the potential role of miR-328 in vascular endothelial cell injury during atherosclerosis. In our current study, we observed that oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis and inhibited cell viability dose-dependently and time-dependently. In addition, indicated dosage of ox-LDL obviously triggered HUVECs inflammation and oxidative stress process. Then, it was found that miR-328 in HUVECs was reduced by ox-LDL. HUVECs apoptosis was greatly repressed and cell survival was significantly upregulated by overexpression of miR-328. Furthermore, mimics of miR-328 rescued cell inflammation and oxidative stress process induced by ox-LDL. Oppositely, inhibitors of miR-328 strongly promoted ox-LDL-induced endothelial cells injury in HUVECs. By using bioinformatics analysis, high-mobility group box-1 (HMGB1) was predicted as a downstream target of miR-328. HMGB1 has been reported to be involved in atherosclerosis development. The correlation between miR-328 and HMGB1 was validated in our current study. Taken these together, it was implied that miR-328 ameliorated ox-LDL-induced endothelial cells injury through targeting HMGB1 in atherosclerosis.  相似文献   

17.
Colonic microbiota ferment non-absorbed dietary fiber to produce prodigious amounts of short chain fatty acids (SCFAs) that benefit the host through a myriad of metabolic, trophic, and chemopreventative effects. The chemopreventative effects of the SCFA butyrate are, in part, mediated through induction of p21 gene expression. In this study, we assessed the role of microRNA(miRNA) in butyrate's induction of p21 expression. The expression profiles of miRNAs in HCT-116 cells and in human sporadic colon cancers were assessed by microarray and quantitative PCR. Regulation of p21 gene expression by miR-106b was assessed by 3' UTR luciferase reporter assays and transfection of specific miRNA mimics. Butyrate changed the expression of 44 miRNAs in HCT-116 cells, many of which were aberrantly expressed in colon cancer tissues. Members of the miR-106b family were decreased in the former and increased in the latter. Butyrate-induced p21 protein expression was dampened by treatment with a miR-106b mimic. Mutated p21 3'UTR-reporter constructs expressed in HCT-116 cells confirmed direct miR-106b targeting. Butyrate decreased HCT-116 proliferation, an effect reversed with the addition of the miR-106b mimic. We conclude that microbe-derived SCFAs regulate host gene expression involved in intestinal homeostasis as well as carcinogenesis through modulation of miRNAs.  相似文献   

18.
19.
Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced when hyaluronic acid (HA) was added to the cell cultures. An inverse correlation between the expression of miR-199a-3p and CD44 protein was noted in primary HCC specimens. The ability of miR-199a-3p to selectively kill CD44+ HCC may be a useful targeted therapy for CD44+ HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号