首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
6-hydroxydopamine (6-OHDA)-induced apoptosis in dopaminergic neuronal cells is a common cell model of Parkinson's disease (PD). The role of apoptosis signal-regulating kinase 1 (ASK1) in this model has not been well studied. We observed significant activation of ASK1, p38 and JNK, as well as apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells exposed to 6-OHDA. Over-expressing kinase-dead mutant ASK1(K709M) or knock-down of endogenous ASK1 by its small interfering RNA (siRNA) greatly suppressed activation of these kinases and apoptosis in the cells. It was found that the activation of p38 and JNK was suppressed to almost the same extent as that of ASK1 in the ASK1-knock-down cells, suggesting that activated ASK1 is almost totally responsible for activation of p38/JNK. It was also observed that the 6-OHDA-induced cell apoptosis could be effectively prevented by over-expressing the dominant-negative mutant of p38 or p38 inhibitor SB203580, demonstrating that activation of p38/JNK signalling is required for initiating the programmed cell death. Furthermore, suppression of the 6-OHDA-generated reactive oxygen species (ROS) by pre-incubation of cells with N-acetyl-L-cysteine effectively inhibited the 6-OHDA-induced activation of ASK1, p38 and JNK, and protected the cells from apoptosis. This study clearly shows the route from ROS generation by 6-OHDA to initiation of p38/JNK signalling via activation of ASK1 in the studied PD model.  相似文献   

3.
Celastrol, an active component found in the Chinese herb tripterygium wilfordii has been identified as a neuroprotective agent for neurodegenerative diseases including Parkinson’s disease (PD) through unknown mechanism. Celastrol can induce autophagy, which plays a neuroprotective role in PD. We tested the protective effect of celastrol on rotenone-induced injury and investigated the underlying mechanism using human neuroblastoma SH-SY5Y cells. The SH-SY5Y cells were treated with celastrol before rotenone exposure. The cells survival, apoptosis, accumulation of α-synuclein, oxidative stress and mitochondrial function, and autophagy production were analyzed. We found celastrol (500 nM) pre-treatment enhanced cell viability (by 28.99%, P < 0.001), decreased cell apoptosis (by 54.38%, P < 0.001), increased SOD and GSH (by 120.53% and 90.46%, P < 0.01), reduced accumulation of α-synuclein (by 35.93%, P < 0.001) and ROS generation (by 33.99%, P < 0.001), preserved MMP (33.93 ± 3.62%, vs. 15.10 ± 0.71% of JC-1 monomer, P < 0.001) and reduced the level of cytochrome C in cytosol (by 45.57%, P < 0.001) in rotenone treated SH-SY5Y cells. Moreover, celastrol increased LC3-II/LC3 I ratio by 60.92% (P < 0.001), indicating that celastrol activated autophagic pathways. Inhibiting autophagy by 3-methyladenine (3-MA) abolished the protective effects of celastrol. Our results suggested that celastrol protects SH-SY5Y cells from rotenone induced injuries and autophagic pathway is involved in celastrol neuroprotective effects.  相似文献   

4.
The insulin-like growth factors 2 (IGF2) is a peptide hormone that binds to the insulin-like growth factor 1 receptor (IGF1R) and is abundantly stored in bone. IGF1R is deeply involved in the pathogenesis of many cancers that growth within bone and is also involved in osteoclast biology. Among different cell lines representative of osteolytic tumors, we found a very high expression of IGF2 in SH-SY5Y cells derived from neuroblastoma (NB). We previously showed that NB cells induce an osteolytic process through the Osteoprotegerin/RANKL/RANK and the canonical Wnt pathway system. Here, we hypothesized that NB promotes osteoclastogenesis also via IGF2. First, we demonstrated the presence of IGF1R on the osteoclast basolateral membrane, and we observed a cyclic IGF1R activation along with the differentiation process, also when induced by SH-SY5Y. Moreover, we found that IGF2 mRNA expression in SH-SY5Y cells was further increased when co-cultured with mesenchymal stromal cells, suggesting that IGF2 is important for NB interaction with the bone microenvironment. Finally, the treatment of SH-SY5Y cells with an anti-IGF2 siRNA or the addition of anti-IGF1R molecules impaired NB-induced osteoclastogenesis, even though the chemoattraction of monocytes by NB cells was unaffected. Our findings suggest that in IGF2-producing osteolytic tumors IGF1R is a good candidate for targeted therapies in combination with conventional drugs.  相似文献   

5.
【背景】EV71感染所致的重症手足口病易导致神经系统并发症,使患儿预后较差,甚至死亡。【目的】从EV71可诱导神经细胞自噬这一现象出发,探索该病毒诱导神经细胞自噬的miRNA机制,探讨EV71损伤神经细胞可能的分子机制。【方法】通过RT-PCR及Westernblot技术,在感染EV71病毒的人神经母细胞瘤细胞SH-SY5Y中检测细胞自噬变化;通过芯片分析细胞感染前后差异表达的miRNA分子,再使用miRNA mimics调节工具明确与EV71诱导神经细胞自噬有关的miRNA分子。【结果】EV71可诱导SH-SY5Y细胞自噬增加,下调细胞内miRNA29b(miR29b)分子的表达水平;当上调细胞内miR29b的表达后,EV71诱导细胞自噬增加的现象可被逆转,病毒复制水平下降。【结论】EV71诱导神经细胞自噬是通过下调miR29b分子的表达水平实现;miR29b不仅与自噬相关,它与EV71病毒复制也存在密切关系。因此,该研究不仅有助于阐明EV71导致神经系统损伤的具体分子机制,还为miR29b成为治疗EV71感染可能的新药物靶点奠定了理论基础。  相似文献   

6.
Li XH  Wu YJ 《Life sciences》2007,80(9):886-892
Lysophosphatidylcholine (LPC) is an important bioactive lipid. In the nervous system, elevated levels of LPC have been shown to produce demyelination. In the present study, we examined the effect of exogenous LPC on intracellular Ca2+ mobilization in human neuroblastoma SH-SY5Y cells. In Ca2+-containing medium, introduction of LPC induced a steady rise in cytosolic Ca2+ levels ([Ca2+]i) in a dose-dependent manner, and this rise was provoked by LPC itself, not by its hydrolysis product produced by lysophospholipase. The increase in [Ca2+]i was reduced by 36% by removal of extracellular Ca2+, while preincubation of the cells with verapamil, an L-type Ca2+ channel blocker, inhibited the response by 23%, part of the Ca2+ influx. Conversely, Ni2+, which inhibits the Na+-Ca2+ exchanger, or Na+-deprivation did not affect LPC-induced Ca2+ influx. In Ca2+-free medium, depletion of Ca2+ stores in the endoplasmic reticulum (ER) by thapsigargin, an ER Ca2+-ATPase inhibitor, abolished the Ca2+ increase. Moreover, LPC-induced [Ca2+]i increase was fully blocked by ruthenium red and procaine, inhibitors of ryanodine receptor (RyR), but was not affected by 2-aminoethoxydiphenyl borate, an inhibitor of inositol triphosphate receptor, or by pertussis toxin, a G(i/o) protein inhibitor. Combined treatment with verapamil plus thapsigargin markedly inhibited but did not abolish the LPC-induced Ca2+ response. These findings indicate that LPC-induced [Ca2+]i increase depends on both external Ca2+ influx and Ca2+ release from ER Ca2+ stores, in which L-type Ca2+ channels and RyRs may be involved. However, in digitonin-permeabilized SH-SY5Y cells, LPC could not induce any [Ca2+]i increase in Ca2+-free medium, suggesting that LPC may act indirectly on RyRs of ER.  相似文献   

7.
Previous single-molecule studies have shown a long-term diffusion superimposed to a short-term confinement of the human mu opioid (hMOP) receptors at the surface of heterologous cells. However, additional ensemble average measurements are required to reach a complete understanding of the undergoing process. Here, we analyse, by fluorescence recovery after photobleaching measurements, the lateral diffusion of fully functional T7-EGFP-hMOP receptors in neuroblastoma SH-SY5Y cells naturally expressing a low level of the wild-type receptor. Experiments carried out at variable observation radii demonstrate the restriction of the receptors diffusion to sub-micrometer sized domains. Furthermore, consistently with the long-term single-molecule data, the domains are found permeable.  相似文献   

8.
Much evidence indicates that typical phytochemicals such as resveratrol, epigallocatechin gallate, and curcumin have a growth inhibitory effect against cancer cells when each is tested separately. However, when fruits and vegetables including a mixture of phytochemicals are consumed, it is unclear whether this anti-proliferative activity is elicited in the body. Initially, we found that nobiletin, a typical polymethoxy flavone from Citrus, had a preventive effect on H(2)O(2)-induced apoptosis at 20-30 microM in human neuroblastoma SH-SY5Y cells. Nobiletin acted as a signal modulator to attenuate the activation of the intrinsic pathway of the apoptosis induced by H(2)O(2) exposure. On the other hand, tangeretin and 5-demethyl nobiletin, which are also polymethoxy flavones from Citrus, were shown to have a growth inhibitory effect by us and others. These results led us to investigate the interactive effects of these polymethoxy flavones on cell growth. In the present study, we found that tangeretin, nobiletin, and 5-demethyl nobiletin exhibited a cancelling, synergistic, or additive effect when combinations of two of these three compounds were tested. As to the structure-activity relationship, the methyl group at C-5 in nobiletin was shown to contribute to the anti-proliferative effect. By the combined treatment with tangeretin and 5-demethyl nobiletin, the apoptotic cell population and the activity of caspase-3 were synergistically elevated. The finding that tangeretin and 5-demethyl nobiletin induced apoptosis by reducing the mitochondrial membrane potential suggested that an intrinsic pathway of apoptosis was synergistically activated by the combination treatment with tangeretin and 5-demethyl nobiletin. On the other hand, in the combined treatment including nobiletin, the growth inhibitory activity of tangeretin was reduced. These results indicate the relevance of the combination of phytochemicals for the enhancement of the anticancer effect.  相似文献   

9.
Synaptic vesicle formation, vesicle activation and exo/endocytosis in the pre-synaptic area are central steps in neuronal communication. The formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells, differentiated with 12-o-tetradecanoyl-phorbol-13-acetate, dibutyryl cyclic AMP, all-trans-retinoic acid (RA) and cholesterol, was studied by fluorescence microscopy and immunocytochemical methods. RA alone or together with cholesterol, produced significant neurite extension and formation of cell-to-cell contacts. Synaptic vesicle formation was followed by anti-synaptophysin (SypI) and AM1-43 staining. SypI was only weakly detected, mainly in cell somata, before 7 days in vitro, after which it was found in neurites. Depolarization of the differentiated cells with high potassium solution increased the number of fluorescent puncta, as well as SypI and AM1-43 co-localization. In addition to increase in the number of synaptic vesicles, RA and cholesterol also increased the number and distribution of lysosome-associated membrane protein 2 labeled lysosomes. RA-induced Golgi apparatus fragmentation was partly avoided by co-treatment with cholesterol. The SH-SY5Y neuroblastoma cell line, differentiated by RA and cholesterol and with good viability in culture, is a valuable tool for basic studies of neuronal metabolism, specifically as a model for dopaminergic neurons.  相似文献   

10.
The effect of six sesquiterpenes containing an unsaturated dialdehyde functionality, on cell membrane permeability in the human neuroblastoma cell line SH-SY5Y has been studied. The kinetics of the membrane leakage after addition of the sesquiterpenes were determined by measuring the efflux of radioactivity from cells preloaded with tritiated 2-deoxyglucose. The concentrations that gave 5% and 20% efflux of radioactivity as compared with control cells (EC5 and EC20) were determined for each compound. In spite of the structural similarities between the compounds, the effects on cell membrane permeability varied considerably. EC20 for polygodial, which is the most active compound, is 2.5 microM after 20-min incubation, but no leakage could be determined for merulidial even at concentrations as high as 4 mM. Rather, this compound seems to stabilize or fix the cell membrane and a lower efflux of radioactivity was observed as compared to the control cells. A quantitative structure-activity relationship analysis for the five active compounds showed a good correlation between the membrane leakage activity and certain chemical characteristics. Structural features strongly correlated with high activity were found to be: The geometry and the atomic charges of the unsaturated dialdehyde functionality, the dipole moment, the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital and the lipophilicity.  相似文献   

11.
Endoplasmic reticulum (ER) stress has increasingly come into focus as a factor contributing to neuronal injury. Although caspase-dependent mechanisms have been implicated in ER stress, the signaling pathways involved remain unclear. In this study, we examined the role of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase pathway that is highly conserved in many systems for balancing cell survival and death. Prolonged treatment of the human neuroblastoma cell line SH-SY5Y with thapsigargin, an inducer of ER stress, increased cell death over 24-48 h, as measured by LDH release. Caspases were involved; increased levels of active caspase-3 and cleaved caspase substrate PARP were detected, and treatment with Z-VAD-FMK reduced thapsigargin-induced cytotoxicity. In contrast, inhibition of calpain was not protective, although calpain was activated following thapsigargin treatment. An early and transient phosphorylation of ERK1/2 occurred after thapsigargin-induced ER stress, and targeting this pathway with the MEK inhibitors U0126 or PD98059 significantly reduced cell death. Similar cytoprotection was obtained against brefeldin A, another ER stress agent. However, protection against ER stress via ERK inhibition was not accompanied by amelioration of caspase-3 activation, PARP cleavage, or DNA laddering. These data indicate that ERK may contribute to non-caspase-dependent pathways of injury after ER stress.  相似文献   

12.
The role of intracellular Ca2+ homeostasis in mechanisms of neuronal cell death and cysteine protease activation was investigated in SH-SY5Y human neuroblastoma cells. Cells were incubated in 2 mM EGTA to lower intracellular Ca2+ or 5 mM CaCl2 to raise it. Cell death and activation of calpain and caspase-3 were measured. Both EGTA and excess CaCl2 elicited cell death. EGTA induced DNA laddering and an increase in caspase-3-like, but not calpain, activity. Pan-caspase inhibitors protected against EGTA-, but not CaCl2-, induced cell death. Conversely, excess Ca2+ elicited necrosis and activated calpain but not caspase-3. Calpain inhibitors did not preserve cell viability. Ca2+ was the death-mediating factor, because restoration of extracellular Ca2+ protected against cell death induced by EGTA and blockade of Ca2+ channels by Ni2+ protected against that induced by high Ca2+. We conclude that the EGTA treatment lowered intracellular Ca2+ and elicited caspase-3-like protease activity, which led to apoptosis. Conversely, excess extracellular Ca2+ entered Ca2+ channels and increased intracellular Ca2+ leading to calpain activation and necrosis. The mode of cell death and protease activation in response to changing Ca2+ were selective and mutually exclusive, demonstrating that these are useful models to individually investigate apoptosis and necrosis.  相似文献   

13.
The role of protein kinase C activation in changes in muscarinic receptor functions and in the appearance of biochemical properties characteristic of neuronal cells was studied in SH-SY5Y human neuroblastoma cells induced to differentiate with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). A decrease in muscarinic receptor sensitivity with respect to agonist induced Ca2+ mobilization and receptor number parallelled the increase in membrane-associated protein kinase C (PK-C) activity. These changes occurred during the first 6 h of culture, and they were associated with rounding-up of cells. A subsequent decrease in particulate PK-C activity was followed by an increase in noradrenaline content, the appearance of an electrically excitable membrane, and an increase in the level of neuron-specific enolase. These changes were accompanied by a pronounced neurite outgrowth. 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (H-7), an inhibitor of PK-C and cyclic nucleotide-dependent protein kinases, enhanced the morphological differentiation induced by TPA, whereas N-(2-guanidinoethyl)-5-isoquinolinesulphonamide (HA-1004), which primarily inhibits cyclic nucleotide-dependent protein kinases, had no effect on the TPA-induced phenotypic differentiation. H-7 inhibited the decrease in muscarinic receptor sensitivity and receptor number, but had no effect on the appearance of the electrically excitable membrane or on the increase in the neuron-specific enolase level. Both H-7 and HA-1004 inhibited the TPA-induced increase in noradrenaline content.  相似文献   

14.
Substantial evidence suggests that peroxynitrite generated from the bi-radical reaction of nitric oxide and superoxide is critically involved in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Reaction with sulfhydryl (SH)-containing molecules has been proposed to be a major detoxification pathway of peroxynitrite in biological systems. This study was undertaken to determine if chemically elevated intracellular reduced glutathione (GSH), a major SH-containing biomolecule, affords protection against peroxynitrite-mediated toxicity in cultured neuronal cells. Incubation of human neuroblastoma SH-SY5Y cells with the unique chemoprotectant, 3H-1,2-dithiole-3-thione (D3T), led to a significant elevation of cellular GSH in a concentration-dependent fashion. To examine the protective effects of D3T-induced GSH on peroxynitrite-mediated toxicity, SH-SY5Y cells were pretreated with D3T and then exposed to either the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), or the authentic peroxynitrite. We observed that D3T-pretreated cells showed a markedly increased resistance to SIN-1- or authentic peroxynitrite-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. Conversely, depletion of cellular GSH by buthionine sulfoximine (BSO) caused a marked potentiation of SIN-1- or authentic peroxynitrite-mediated cytotoxicity. To further demonstrate the causal role for GSH induction in D3T-mediated cytoprotection, SH-SY5Y cells were co-treated with BSO to abolish D3T-induced GSH elevation. Co-treatment of the cells with BSO was found to significantly reverse the protective effects of D3T on SIN-1- or authentic peroxynitrite-elicited cytotoxicity. Taken together, this study demonstrates for the first time that D3T can induce GSH in cultured SH-SY5Y cells, and that the D3T-augmented cellular GSH defense affords a marked protection against peroxynitrite-induced toxicity in cultured human neuronal cells.  相似文献   

15.

Aims

This study aims to investigate the effect and the mechanisms of notoginsenoside Ft1, a natural compound exclusively found in P. notoginseng, on the proliferation and apoptosis of human neuroblastoma SH-SY5Y cells.

Main methods

CCK-8 assay was used to assess the cell proliferation. Flow cytometry was performed to measure the cell cycle distribution and cell apoptosis. Hoechst 33258 staining was conducted to confirm the morphological changes of apoptotic cells. Protein expression was detected by western blot analysis and caspase 3 activity was measured by colorimetric assay kit.

Key findings

Among the saponins examined, Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45 μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis, which was confirmed by Hoechst 33258 staining. Further studies demonstrated that Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK. However, the phosphorylation of Jak2 and p85 PI3K was reduced by Ft1. Inhibitors of p38 MAPK and ERK1/2 but not JNK abrogated the up-regulated protein expressions of cleaved caspase 3, p21 and down-regulated protein expression of Bcl-2 as well as elevated caspase 3 activity induced by Ft1.

Significance

Ft1 arrested the proliferation and elicited the apoptosis of SH-SY5Y cells possibly via p38 MAPK and ERK1/2 pathways, which indicates the potential therapeutic effect of it on human neuroblastoma.  相似文献   

16.
1. The effects of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine; PAF) on hepatic metabolism in vivo in rats were studied. 2. PAF stimulated synthesis of hepatic lipid (saponified and non-saponified) in a dose-dependent fashion and caused hypertriglyceridaemia. There was no effect of PAF on lipogenesis in isolated hepatocytes. 3. High doses of PAF also decreased hepatic glycogen. 4. All doses of PAF decreased plasma insulin, and this was accompanied by hyperglycaemia, except at the lowest dose. 5. The selective PAF-receptor antagonist L659.989 prevented the stimulation of lipogenesis, but indomethacin did not.  相似文献   

17.
In an attempt to clarify the protective effect of puerarin on toxin-insulted dopaminergic neuronal death, this present study was carried out by using a typical Parkinson's disease (PD) model - 1-methyl-4-phenylpyridinium iodide (MPP(+))-induced dopaminergic SH-SY5Y cellular model. Data are presented, which showed that puerarin up-regulated Akt phosphorylation in both of MPP(+)-treated and non-MPP(+)-treated cells. The presence of PI3K inhibitor LY294002 completely blocked puerarin-induced activation of Akt phosphorylation. Moreover, puerarin decreased MPP(+)-induced cell death, which was blocked by phosphoinositide 3-kinase (PI3K) inhibitor LY294002. We further demonstrated that puerarin protected against MPP(+)-induced p53 nuclear accumulation, Puma (p53-upregulated mediator of apoptosis) and Bax expression and caspase-3-dependent programmed cell death (PCD). This protection was blocked by applying a PI3K/Akt inhibitor. Additionally, it was Pifithrin-α, but not Pifithrin-μ, which blocked MPP(+)-induced Puma and Bax expression, caspase-3 activation and cell death. Collectively, these data suggest that the activation of PI3K/Akt pathway is involved in the protective effect of puerarin against MPP(+)-induced neuroblastoma SH-SY5Y cell death through inhibiting nuclear p53 accumulation and subsequently caspase-3-dependent PCD. Puerarin might be a potential therapeutic agent for PD.  相似文献   

18.
Summary Toluene diisocyanate (TDI) is widely used as a chemical intermediate in the production of polyurethane products such as foams, coatings, and elastomers. In exposed workers, chronic inhalation of TDI has resulted in significant decreases in lung function. TDI-induced asthma is related to its disturbance of acetylcholine in most affected workers but the actions of TDI on nicotinic acetylcholine receptors (nAChR) are unclear. In order to understand the role of TDI acting on nAChR, we used human neuroblastoma SH-SY5Y cells to investigate the effects of TDI on cytosolic free calcium concentration ([Ca ) changes under the stimulation of nAChR. The results showed that TDI was capable of inhibiting the [Ca rise induced by nicotinic ligands, epibatidine, DMPP and nicotine. The inhibition was remained, even increased after chronic treatment of TDI. Our study of TDI acting on human nAChR suggests a possibility that the human nerve system plays some role in the toxicity of TDI in the pulmonary system.  相似文献   

19.
20.
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号