首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Creatine kinase (CK) is a key enzyme for maintaining a constant ATP/ADP ratio during rapid energy turnover. To investigate the role of CK in skeletal muscle fatigue, we used isolated whole muscles and intact single fibers from CK-deficient mice (CK(-/-)). With high-intensity electrical stimulation, single fibers from CK(-/-) mice displayed a transient decrease in both tetanic free myoplasmic [Ca(2+)] ([Ca(2+)](i), measured with the fluorescent dye indo-1) and force that was not observed in wild-type fibers. With less intense, repeated tetanic stimulation single fibers and EDL muscles, both of which are fast-twitch, fatigued more slowly in CK(-/-) than in wild-type mice; on the other hand, the slow-twitch soleus muscle fatigued more rapidly in CK(-/-) mice. In single wild-type fibers, tetanic force decreased and [Ca(2+)](i) increased during the first 10 fatiguing tetani, but this was not observed in CK(-/-) fibers. Fatigue was not accompanied by phosphocreatine breakdown and accumulation of inorganic phosphate in CK(-/-) muscles. In conclusion, CK is important for avoiding fatigue at the onset of high-intensity stimulation. However, during more prolonged stimulation, CK may contribute to the fatigue process by increasing the myoplasmic concentration of inorganic phosphate.  相似文献   

2.
Integrins: redundant or important players in skeletal muscle?   总被引:8,自引:0,他引:8  
  相似文献   

3.
4.
5.
Simple mixing of acid purified histones H3 and H4 in equimolar quantities at low ionic strength near pH 7 does not yield the tetramer but rather a high Mr aggregate. Dialysis of acid extracted total or core histones into 2 M NaCl 150 mM phosphate (pH 7.4) followed by fractionation of the histone complexes at lower ionic strength (150 mM NaCl) results in an H3H4 tetramer of a structure identical to that derived from salt-extracted histones. Dialysis of acid extracted total or core histones directly into the lower ionic strength buffer with subsequent fractionation, results in H3H4 tetramer of closely similar structure.  相似文献   

6.
Skeletal muscle is highly adaptable and responds to changes in loading through exercise or resistance training through a number of mechanisms resulting in increased muscle mass and changes in contractile phenotype. To further understand and study the molecular mechanisms underlying the adaptive response of muscle, a number of in vitro culture systems have been developed that utilise mechanical loading or stretching of the cultured muscle to recapitulate the adaptations observed in vivo. Here we review the use of such stretching regimes for engineered muscle constructs and assess how well these in vitro systems mimic in vivo muscle physiology and adaptation.  相似文献   

7.
Does actin bind to the ends of thin filaments in skeletal muscle?   总被引:8,自引:6,他引:2       下载免费PDF全文
We examined whether or not purified actin binds to the ends of thin filaments in rabbit skeletal myofibrils. Phase-contrast, fluorescence, and electron microscopic observations revealed that actin does not bind to the ends of thin filaments of intact myofibrils. However, in I-Z-I brushes prepared by dissolving thick filaments at high ionic strength, marked binding of actin to the free ends, i.e., the pointed ends, of thin filaments was observed when actin was added at an early phase of polymerization. As the polymerization of actin proceeded, the binding efficiency decreased. The critical actin concentration for this binding was higher than that for polymerization in solution. The binding of G-actin was not observed at low ionic strength. On the basis of these results, we suggest that a particular structure suppressing the binding of actin is present at the free ends of thin filaments in intact myofibrils and that a part of the end structure population is eliminated or modified at high ionic strength so that further binding of actin becomes possible. The myofibril and I-Z-I brush appear to be useful systems for studies aimed at elucidating the organizational mechanisms of actin filaments in vivo.  相似文献   

8.
Decreased levels of the δ isozyme of diacylglycerol kinase (DGK) in skeletal muscle attenuate glucose uptake and, consequently, are critical for the pathogenesis of type 2 diabetes. We recently found that free myristic acid (14:0), but not free palmitic acid (16:0), increased the DGKδ protein levels and enhanced glucose uptake in C2C12 myotube cells. However, it has been unclear how myristic acid regulates the level of DGKδ2 protein. In the present study, we characterized the myristic acid-dependent increase of DGKδ protein. A cycloheximide chase assay demonstrated that myristic acid, but not palmitic acid, markedly stabilized DGKδ protein. Moreover, other DGK isozymes, DGKη and ζ, as well as glucose uptake-related proteins, such as protein kinase C (PKC) α, PKCζ, Akt and glycogen synthase kinase 3β, failed to be stabilized by myristic acid. Furthermore, DGKδ was not stabilized in cultured hepatocellular carcinoma cells, pancreas carcinoma cells or neuroblastoma cells, and only a moderate stabilizing effect was observed in embryonic kidney cells. A proteasome inhibitor and a lysosome inhibitor, MG132 and chloroquine, respectively, partly inhibited DGKδ degradation, suggesting that myristic acid prevents, at least in part, the degradation of DGKδ by the ubiquitin-proteasome system and the autophagy-lysosome pathway. Overall, these results strongly suggest that myristic acid attenuates DGKδ protein degradation in skeletal muscle cells and that this attenuation is fatty acid-, protein- and cell line-specific. These new findings provide novel insights into the molecular mechanisms of the pathogenesis of type 2 diabetes mellitus.  相似文献   

9.
Carnitine acetyltransferase (CRAT) deficiency has previously been shown to result in muscle insulin resistance due to accumulation of long-chain acylcarnitines. However, differences in the acylcarnitine profile and/or changes in gene expression and protein abundance of CRAT in myotubes obtained from obese patients with type 2 diabetes mellitus (T2DM) and glucose-tolerant obese and lean controls remain unclear. The objective of the study was to examine whether myotubes from obese patients with T2DM express differences in gene expression and protein abundance of CRAT and in acylcarnitine species pre-cultured under glucose and insulin concentrations similar to those observed in healthy individuals in the over-night fasted, resting state. Primary myotubes obtained from obese persons with or without T2DM and lean controls (n=9 in each group) were cultivated and harvested for LC-MS-based profiling of acylcarnitines. The mRNA expression and protein abundance of CRAT were determined by qPCR and Western Blotting, respectively. Our results suggest that the mRNA levels and protein abundance of CRAT were similar between groups. Of the 14 different acylcarnitine species measured by LC-MS, the levels of palmitoylcarnitine (C16) and octadecanoylcarnitine (C18) were slightly reduced in myotubes derived from T2DM patients (p<0.05) compared to glucose-tolerant obese and lean controls. This suggests that the CRAT function is not the major contributor to primary insulin resistance in cultured myotubes obtained from obese T2DM patients.  相似文献   

10.
11.
Hereditary inclusion body myopathy (GNE myopathy) is a neuromuscular disorder due to mutation in key sialic acid biosynthetic enzyme, GNE. The pathomechanism of the disease is poorly understood as GNE is involved in other cellular functions beside sialic acid synthesis. In the present study, a HEK293 cell-based model system has been established where GNE is either knocked down or over-expressed along with pathologically relevant GNE mutants (D176V and V572L). The subcellular distribution of recombinant GNE and its mutant showed differential localization in the cell. The effect of mutation on GNE function was investigated by studying hyposialylation of cell membrane receptor, β1-integrin. Hyposialylated β1-integrin localized to internal vesicles that was restored upon supplementation with sialic acid. Fibronectin stimulation caused migration of hyposialylated β1-integrin to the cell membrane and co-localization with focal adhesion kinase (FAK) leading to increased focal adhesion formation. This further activated FAK and Src, downstream signaling molecules and led to increased cell adhesion. This is the first report to show that mutation in GNE affects β1-integrin-mediated cell adhesion process in GNE mutant cells.  相似文献   

12.
13.

Background  

The transforming growth factor-β (TGF-β) family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-βs in fish muscle growth is not known.  相似文献   

14.
15.
Calpains are a family of Ca2+-dependent intracellular cysteine proteases, including the ubiquitously expressed μ-calpain (CANP1) and m-calpain (CANP2). The CANP1 has been found to play a central role in postmortem proteolysis and meat tenderization. However, the physiological roles of CANP1 in cattle skeletal satellite cells remain unclear. In this study, three small interference RNA sequences (siRNAs) targeting CANP1 gene were designed and ligated into pSilencer plasmid vector to construct shRNA expression constructs. Suppression of CANP1 in satellite cells was evaluated using these shRNA expressing constructs. Our results revealed that all three siRNAs could downregulate the expression of CANP1. Suppression of CANP1 significantly reduced cell viability in cell proliferation when compared with control cells. We found a crosstalk between CANP1 and caspase systems, particularly suppression of CANP1 resulted in an increase in the expressions of apoptotic caspases such as caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9, as well as heat-shock protein (HSP) systems. Additionally, suppression of CANP1 led to the upregulation of other apoptosis and DNA damage-regulating genes whilst at the same time downregulating proliferation, migration, and differentiation-regulating genes. The results of our findings report for the first time that suppression of CANP1 resulted in the activation of caspase and HSP systems which might in turn regulate apoptosis through the caspase-dependent cell death pathway. This clearly demonstrates the key roles of CANP1 in regulation of cell proliferation and survival.  相似文献   

16.
Although Parkinson's disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons. Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-synuclein (α-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with α-syn being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The fact that α-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not necessarily direct, exists between the two. What are the experimental data supporting a common molecular pathway for dominant PD genes? Do α-syn and LRRK2 target common molecules? Does LRRK2 act upstream of α-syn? In this review we will try to address these of questions based on the recent findings available in the literature.  相似文献   

17.
Although it has been suggested that the C-terminal tail of the β(1a) subunit of the skeletal dihyropyridine receptor (DHPR) may contribute to voltage-activated Ca(2+) release in skeletal muscle by interacting with the skeletal ryanodine receptor (RyR1), a direct functional interaction between the two proteins has not been demonstrated previously. Such an interaction is reported here. A peptide with the sequence of the C-terminal 35 residues of β(1a) bound to RyR1 in affinity chromatography. The full-length β(1a) subunit and the C-terminal peptide increased [(3)H]ryanodine binding and RyR1 channel activity with an AC(50) of 450-600 pM under optimal conditions. The effect of the peptide was dependent on cytoplasmic Ca(2+), ATP, and Mg(2+) concentrations. There was no effect of the peptide when channel activity was very low as a result of Mg(2+) inhibition or addition of 100 nM Ca(2+) (without ATP). Maximum increases were seen with 1-10 μM Ca(2+), in the absence of Mg(2+) inhibition. A control peptide with the C-terminal 35 residues in a scrambled sequence did not bind to RyR1 or alter [(3)H]ryanodine binding or channel activity. This high-affinity in vitro functional interaction between the C-terminal 35 residues of the DHPR β(1a) subunit and RyR1 may support an in vivo function of β(1a) during voltage-activated Ca(2+) release.  相似文献   

18.
LXR (liver X receptor) and PPARα (peroxisome-proliferator-activated receptor α) are nuclear receptors that control the expression of genes involved in glucose and lipid homoeostasis. Using wild-type and PPARα-null mice fed on an LXR-agonist-supplemented diet, the present study analysed the impact of pharmacological LXR activation on the expression of metabolically important genes in skeletal muscle, testing the hypothesis that LXR activation can modulate PPAR action in skeletal muscle in a manner dependent on nutritional status. In the fed state, LXR activation promoted a gene profile favouring lipid storage and glucose oxidation, increasing SCD1 (stearoyl-CoA desaturase 1) expression and down-regulating PGC-1α (PPARγ co-activator-1α) and PDK4 (pyruvate dehydrogenase kinase 4) expression. PPARα deficiency enhanced LXR stimulation of SCD1 expression, and facilitated elevated SREBP-1 (sterol-regulatory-element-binding protein-1) expression. However, LXR-mediated down-regulation of PGC-1α and PDK4 was opposed and reversed by PPARα deficiency. During fasting, prior LXR activation augmented PPARα signalling to heighten FA (fatty acid) oxidation and decrease glucose oxidation by augmenting fasting-induced up-regulation of PGC-1α and PDK4 expression, effects opposed by PPARα deficiency. Starvation-induced down-regulation of SCD1 expression was opposed by antecedent LXR activation in wild-type mice, an effect enhanced further by PPARα deficiency, which may elicit increased channelling of FA into triacylglycerol to limit lipotoxicity. Our results also identified potential regulatory links between the protein deacetylases SIRT1 (sirtuin 1) and SIRT3 and PDK4 expression in muscle from fasted mice, with a requirement for PPARα. In summary, we therefore propose that a LXR-PPARα signalling axis acts as a metabolostatic regulatory mechanism to optimize substrate selection and disposition in skeletal muscle according to metabolic requirement.  相似文献   

19.
20.
Homocystinuria is a neurometabolic disease caused by a severe deficiency of cystathionine beta‐synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction. In this study, we investigated the effect of chronic hyperhomocysteinemia on the cell viability of the mitochondrion, as well as on some parameters of energy metabolism, such as glucose oxidation and activities of pyruvate kinase, citrate synthase, isocitrate dehydrogenase, malate dehydrogenase, respiratory chain complexes and creatine kinase in gastrocnemius rat skeletal muscle. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injections of homocysteine (0.3–0.6 µmol/g body weight) and/or creatine (50 mg/kg body weight) from the 6th to the 28th days of age. The animals were decapitated 12 h after the last injection. Homocysteine decreased the cell viability of the mitochondrion and the activities of pyruvate kinase and creatine kinase. Succinate dehydrogenase was increased other evaluated parameters were not changed by this amino acid. Creatine, when combined with homocysteine, prevented or caused a synergistic effect on some changes provoked by this amino acid. Creatine per se or creatine plus homocysteine altered glucose oxidation. These findings provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function, more studies are needed to elucidate them. Although creatine prevents some alterations caused by homocysteine, it should be used with caution, mainly in healthy individuals because it could change the homeostasis of normal physiological functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号