首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scale-dependent interactions and community structure on cobble beaches   总被引:4,自引:0,他引:4  
Recent theory suggests that scale-dependent interaction between facilitation and competition can generate spatial structure in ecological communities. The application of this hypothesis, however, has been limited to systems with little underlying heterogeneity. We evaluated this prediction in a plant community along an intertidal stress gradient on cobble beaches in Rhode Island, USA. Prior studies have shown that Spartina alterniflora facilitates a forb-dominated community higher in the intertidal by modifying the shoreline environment. We tested the hypothesis that, at a smaller scale, Spartina competitively excludes forb species, explaining their marked absence within the lower Spartina zone. Transplant experiments showed forb species grow significantly better in the Spartina zone when neighbours were removed. Removal of the Spartina canopy led to a massive emergence of annual forbs, showing that competition limits local occupation. These findings indicate that interaction of large-scale facilitation and small-scale competition drives plant zonation on cobble beaches. This study is the first to provide empirical evidence of scale-dependent interactions between facilitation and competition spatially structuring communities in heterogeneous environments.  相似文献   

2.
Disturbances reduce the biota in stream ecosystems, and leave biological legacies, including remnant species, which potentially influence post-disturbance community development but are poorly understood. We investigated whether three remnant species, the snail Radix peregra, the mayfly Serratella ignita and the freshwater shrimp Gammarus pulex, affected community development in mesocosms that mimicked disturbed habitat patches in streams. Following 21 days of colonisation, we found that the occurrence of legacy effects depended on the identity of the remnant species. Radix had the strongest effect. By bulldozing epilithon, the snails acted as ecological engineers that promoted settlement of filter feeders (Simuliidae) and invertebrate predators (especially Pentaneura and Aphelocheirus) and strongly deterred settlement of non-predatory chironomids (e.g. Heterotrissocladius and Microtendipes). Gammarus increased in density (by 665%) where remnant, probably through rapid reproduction. Baetis and Pentaneura were scarce, and Asellus absent, in remnant Gammarus treatments, as a consequence of interference and/or predation by the amphipods. In contrast, Serratella tolerated the colonisation of immigrant species and did not affect the structure of the developing benthic community. Despite the observed effects on the presence and abundance of benthos, remnant fauna had no significant effect on assemblage taxon richness, or that of any specific trophic group. The contrasting effects of remnant species on immigrant colonisation echoed differences in their life-history traits and foraging behaviours. Our results indicate that biota can generate spatial patchiness of epilithon and benthic invertebrates in stream ecosystems.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
Three treatments of zinc (0.05, 0.5, 1.0 mg Zn l−1) and a control could be identified by different algal communities in outdoor, flow-through, stream mesocosms. Established communities were continuously exposed to Zn, and samples were collected on days 0, 2, 5, 10, 20 and 30 after treatment began. Experiments were conducted in spring, summer, and fall 1984. Control stream mesocosms could be identified by diatoms in all seasons. The 0.05 mg Zn l−1 treatment could be identified by certain diatom taxa being more abundant than in the control in all seasons and by a filamentous green alga in summer and fall. The 0.5 mg Zn l−1 treatment could be identified by a filamentous green alga in fall. The 1.0 mg Zn l−1 treatment was dominated by unicellular green algae in all seasons and by a filamentous blue-green alga in summer. A similarity index (SIMI) indicated that Zn-stressed samples generally became less similar to control samples as Zn concentration increased from 0.05 to 1.0 mg Zn l−1. Total biovolume-density of all taxa responded slower than individual taxa in spring and failed to distinguish between Zn treatments in summer and fall. Zinc bound to periphyton was much better than total Zn in water for identifying Zn treatments. Zinc treatments as low as 0.05 mg Zn l−1 changed algal species composition despite 0.047 mg Zn l−1 being the Criterion of the US Environmental Protection Agency for the 24-h average of total recoverable Zn.  相似文献   

4.
Submerged aquatic vegetation is known as a key structural component and regulator in ecosystems. In this mesocosm study, we examine community- and system-level responses to the presence of Vallisneria americana (L), a deep-rooted macrophyte. Phytoplankton, bacteria and filamentous algal biomasses were significantly lowered in the presence of V. americana. In addition, mesocosms with macrophytes had significantly reduced porewater phosphate and iron, water column dissolved organic carbon and total suspended solids, but elevated sediment redox. All mesocosms were net autotrophic (gross primary production/respiration >1). Compared to the macrophyte treatments, the control mesocosms had lower diel net primary production (NPP) midway through the experiment (d 16), but at the end of the experiment (d 36), the controls had the higher values, presumably due to increased filamentous algae. NPP and NPP/R were constant in the macrophyte treatments, whereas NPP/R increased significantly from middle to end of the experiment in the controls. We show that community and system-level responses to the presence of V. americana have significant consequences on system structure and function.  相似文献   

5.
The species-area relationship of the island biogeography theory was calculated for macroinvertebrates in 22 coastal, adjacent streams. A z-value of 0.19 was obtained. The low z-value was probably a consequence of the short distances between streams as well as high dispersal rates. In addition, a cluster analysis based on the dissimilarity of species assemblages showed that stream size was of prime importance in categorizing the streams. To a smaller extent water quality affected the community structure in the streams.  相似文献   

6.
Subtidal algal assemblages were studied on two substrata, rocky reefs and calcareous cobbles. Although the two occur together at comparable depths, their vegetation differs in species composition and richness, and in patterns of plant size, life form, and longevity. The reef bears a species-rich, patchy cover of small filamentous and crustose forms, with occasional clumps of more robust species. The cobbles support a sparse cover of large leafy and dendritic species in addition to many of the smaller species found on the reef. The floristic separation arises from differential establishment and survival of species under conditions of (1) grazing by fish and urchins (on the reef only), and (2) seasonal physical disturbance during storms leading to the removal of most algae (on the cobbles only). Both substrata show a seasonal floristic cycle, but the trend is more pronounced on cobbles. Species do not depart from randomness in their patterns of co-occurrence on individual cobbles or reef fragments. Interspecific competition appears comparatively unimportant in determining species composition on either substratum.  相似文献   

7.
We examined the importance of temporal variability in top–down and bottom–up effects on the accumulation of stream periphyton, which are complex associations of autotrophic and heterotrophic microorganisms. Periphyton contributes to primary production and nutrient cycling and serves as a food resource for herbivores (grazers). Periphyton growth is often limited by the availability of nitrogen and phosphorus, and biomass can be controlled by grazers. In this study we experimentally manipulated nutrients and grazers simultaneously to determine the relative contribution of bottom–up and top–down controls on periphyton over time. We used nutrient diffusing substrates to regulate nutrient concentrations and an underwater electric field to exclude grazing insects in three sequential 16–17 day experiments from August to October in montane Colorado, USA. We measured algal biomass, periphyton organic mass, and algal community composition in each experiment and determined densities of streambed insect species, including grazers. Phosphorus was the primary limiting nutrient for algal biomass, but it did not influence periphyton organic mass across all experiments. Effects of nutrient additions on algal biomass and community composition decreased between August and October. Grazed substrates supported reduced periphyton biomass only in the first experiment, corresponding to high benthic abundances of a dominant mayfly grazer (Rhithrogena spp.). Grazed substrates in the first experiment also showed altered algal community composition with reduced diatom relative abundances, presumably in response to selective grazing. We showed that top–down grazing effects were strongest in late summer when grazers were abundant. The effects of phosphorus additions on algal biomass likely decreased over time because temperature became more limiting to growth than nutrients, and because reduced current velocity decreased nutrient uptake rates. These results suggest that investigators should proceed with caution when extending findings based on short‐term experiments. Furthermore, these results support the need for additional seasonal‐scale field research in stream ecology.  相似文献   

8.
Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0–6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate.  相似文献   

9.
Artificial substrata have been used in diatom studies for almost 100 years. However, concern still exists over whether diatom communities developing on artificial substrata accurately represent communities developing on natural substrata. This study compares the diatom communities colonising glass slides and clay tiles in two coastal dune lakes, and compares these communities to the naturally occurring communities in the epipelon, epilithon, and epiphyton. Both glass microslides and clay tiles, incubated for three separate periods ranging from 29 to 68 days, resulted in replicate substratum samples supporting similar diatom community compositions at each site. The degree of variation between artificial substrata communities at different sites, and between the two artificial substrata types, was generally no more than the degree of variation between communities on different types of natural substrata. Additionally, the composition of the diatom communities on the artificial substrata was representative of the community composition on the natural substrata. The effects of incubation period and siting are discussed.  相似文献   

10.
Soils harbor large, diverse microbial communities critical for local and global ecosystem functioning that are controlled by multiple and poorly understood processes. In particular, while there is observational evidence of relationships between both biotic and abiotic conditions and microbial composition and diversity, there have been few experimental tests to determine the relative importance of these two sets of factors at local scales. Here, we report the results of a fully factorial experiment manipulating soil conditions and plant cover on old‐field mesocosms across a latitudinal gradient. The largest contributor to beta diversity was site‐to‐site variation, but, having corrected for that, we observed significant effects of both plant and soil treatments on microbial composition. Separate phyla were associated with each treatment type, and no interactions between soil and plant treatment were observed. Individual soil characteristics and biotic parameters were also associated with overall beta‐diversity patterns and phyla abundance. In contrast, soil microbial diversity was only associated with site and not experimental treatment. Overall, plant community treatment explained more variation than soil treatment, a result not previously appreciated because it is difficult to dissociate plant community composition and soil conditions in observational studies across gradients. This work highlights the need for more nuanced, multifactorial experiments in microbial ecology and in particular indicates a greater focus on relationships between plant composition and microbial composition during community assembly.  相似文献   

11.
Adaptive evolution can occur over similar timescales as ecological processes such as community assembly, but its particular effects on community assembly and structure and their magnitude are poorly understood. In experimental evolution trials, Daphnia magna were exposed to varying environments (presence and absence of fish and artificial macrophytes) for 2 months. Then, in a common gardening experiment, we compared zooplankton community composition when either experimentally adapted or D. magna from the original population were present. Local adaptation of D. magna significantly altered zooplankton community composition, leading to a suppression of abundances for some zooplankton taxa and facilitation for others. The effect size of D. magna adaptation was similar to that of adding fish or macrophytes to mesocosms, two important drivers of zooplankton community structure. Our results suggest that substantial amounts of variation in community composition in natural systems may be unexplained if evolutionary dynamics are ignored.  相似文献   

12.
1. The replicability of mesocosms is assessed in a case study of artificial streams (4 m2) flanking a lowland chalk river in southern U.K. Among‐mesocosm comparisons of physicochemistry and macroinvertebrate assemblage composition (in drift and benthos) were made during a 2‐year survey of 12 outdoor once‐through linear channels. 2. Mesocosm physicochemistry was highly replicable, with statistically significant congruence in temporal variation across the mesocosm series, low spatial variation and no significant blocking or positional effects arising from mesocosm layout. Parallel physicochemistry was attributed to the outdoor stream‐side location and short water residence times. 3. Mesocosms were colonized by 127 macroinvertebrate taxa from 15 taxonomic orders. Both benthic and drifting assemblages were comparable among mesocosms, with no significant effect of mesocosm layout. Small differences in taxonomic composition were, however, evident among particular mesocosms, with higher (e.g. Tinodes, Limnius and Elmis) or lower (e.g. Pisidium and Valvata) abundances observed for a minority (5%) of taxa. We conclude that large (4 m2) outdoor flow – through mesocosms can be replicable when located near to the source system and allowed to establish naturally.  相似文献   

13.
Climate models predict widespread shifts in precipitation patterns and increases in the frequency of extreme events such as droughts, but consequences for key processes in affected ecosystems remains poorly understood. A 2‐year manipulative experiment used a series of stream mesocosms to test the effect of recurrent drought disturbance on the composition and secondary production of macroinvertebrate consumer assemblages and functional groups. On average, secondary production in drought‐disturbed communities (mean 4.5 g m?2 yr?1) was less than half of that that in controls (mean 10.4 g m?2 yr?1). The effects of the drought differed among functional feeding groups, with substantial declines for detritivore shredders (by 69%) and engulfing predators (by 94%). Contrasting responses were evident among taxa within most functional feeding groups, ranging from extirpation to irruptions in the case of several small midge larvae, but production of most species was suppressed. Taxon‐specific responses were related to body mass and voltinism. The ratio of production to biomass (community P/B) increased under drought, reflecting a shift in production from large long‐lived taxa to smaller taxa with faster life cycles. This research provides some of the first experimental evidence of the profound effects that droughts can have on both the structure and functioning of aquatic ecosystems.  相似文献   

14.
The collection of time-series of periphyton biomass is a difficult task due to the destructive nature of the standard methods. A non-destructive method based on photography and digitalization, for the estimation of Chla of periphyton colonizing artificial substrata is presented. The standard spectrophotometric method was used to obtain a calibration curve. The relative errors of the proposed method were similar to those of other published methods. The photographic method should be used when a large quantity of samples from the same community is needed and a high precision on the individual measurement is not required.  相似文献   

15.
Elevated atmospheric carbon dioxide (eCO2) has been shown to have a variety of ecosystem‐level effects in terrestrial systems, but few studies have examined how eCO2 might affect aquatic habitats. This limits broad generalizations about the effects of a changing climate across biomes. To broaden this generalization, we used free air CO2 enrichment to compare effects of eCO2 (i.e., double ambient ~720 ppm) relative to ambient CO2 (aCO2~360 ppm) on several ecosystem properties and functions in large, outdoor, experimental mesocosms that mimicked shallow sand‐bottom prairie streams. In general, we showed that eCO2 had strong bottom‐up effects on stream autotrophs, which moved through the food web and indirectly affected consumer trophic levels. These general effects were likely mediated by differential CO2 limitation between the eCO2 and aCO2 treatments. For example, we found that eCO2 decreased water‐column pH and increased dissolved CO2 in the mesocosms, reducing CO2‐limitation at times of intense primary production (PP). At these times, PP of benthic algae was about two times greater in the eCO2 treatment than aCO2 treatment. Elevated PP enhanced the rate of carbon assimilation relative to nutrient uptake, which reduced algae quality in the eCO2 treatment. We predicted that reduced algae quality would negatively affect benthic invertebrates. However, density, biomass and average individual size of benthic invertebrates increased in the eCO2 treatment relative to aCO2 treatment. This suggested that total PP was a more important regulator of secondary production than food quality in our experiment. This study broadens generalizations about ecosystem‐level effects of a changing climate by providing some of the first evidence that the global increase in atmospheric CO2 might affect autotrophs and consumers in small stream ecosystems throughout the southern Great Plains and Gulf Coastal slope of North America.  相似文献   

16.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

17.
To demonstrate the utility of universal plastid primers for probing of environmental samples, we extracted DNA from a tropical stream periphyton community and created two environmental clone libraries. We demonstrate the recovery of DNA sequences corresponding to the major groups of algae observed microscopically in the sample, illustrating the utility of these primers for analysis of environmental samples. Using a touchdown polymerase chain reaction technique, almost 99% of recovered sequences correspond to plastid-containing or cyanobacterial taxa, which allows algae to be targeted to the almost complete exclusion of noncyanobacterial prokaryotes and nonplastid-containing eukaryotes.  相似文献   

18.
Global warming is assumed to alter the trophic interactions and carbon flow patterns of aquatic food webs. The impact of temperature on phyto‐bacterioplankton coupling and bacterial community composition (BCC) was the focus of the present study, in which an indoor mesocosm experiment with natural plankton communities from the western Baltic Sea was conducted. A 6°C increase in water temperature resulted, as predicted, in tighter coupling between the diatom‐dominated phytoplankton and heterotrophic bacteria, accompanied by a strong increase in carbon flow into bacterioplankton during the phytoplankton bloom phase. Suppressed bacterial development at cold in situ temperatures probably reflected lowered bacterial production and grazing by protists, as the latter were less affected by low temperatures. BCC was strongly influenced by the phytoplankton bloom stage and to a lesser extent by temperature. Under both temperature regimes, Gammaproteobacteria clearly dominated during the phytoplankton peak, with Glaciecola sp. as the single most abundant taxon. However, warming induced the appearance of additional bacterial taxa belonging to Betaproteobacteria and Bacteroidetes. Our results show that warming during an early phytoplankton bloom causes a shift towards a more heterotrophic system, with the appearance of new bacterial taxa suggesting a potential for utilization of a broader substrate spectrum.  相似文献   

19.
20.
典型河床底质组成中底栖动物群落及多样性   总被引:12,自引:1,他引:12  
段学花  王兆印  程东升 《生态学报》2007,27(4):1664-1672
底栖动物是河流生态系统中食物链的重要环节。通过对长江、黄河、东江和拒马河等河流野外调查和采样分析研究了河床底质组成对底栖动物群落结构的影响规律。研究结果发现,不同河床底质组成中的底栖动物结构差别很大,不同地理位置而相同底质条件和水力条件的河流底栖动物群落组成相似,说明河床底质是影响河流底栖动物群落结构的关键因素,受地理位置和大气候的影响不大;利用多项生物指标分析了不同河床底质组成中底栖动物群落的多样性,卵石河床且有水生植物生长的河流底栖动物物种组成最丰富,大河中沙质河床不稳定,未采集到底栖动物;不同底质类型河床中的优势种群亦不同。并分析了采样所得底栖动物物种数与采样面积之间的关系,符合前者随后者呈幂指数增加的规律,当实测采样面积为1~2m^2时物种数变化不大,建议一般情况下最小采样面积应为1m^2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号