首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arabinogalactan (AG) of Corynebacterianeae is a critical macromolecule that tethers mycolic acids to peptidoglycan, thus forming a highly impermeable cell wall matrix termed the mycolyl-arabinogalactan peptidoglycan complex (mAGP). The front line anti-tuberculosis drug, ethambutol (Emb), targets the Mycobacterium tuberculosis and Corynebacterium glutamicum arabinofuranosyltransferase Mt-EmbA, Mt-EmbB and Cg-Emb enzymes, respectively, which are responsible for the biosynthesis of the arabinan domain of AG. The substrate utilized by these important glycosyltransferases, decaprenylmonophosphoryl-D-arabinose (DPA), is synthesized via a decaprenylphosphoryl-5-phosphoribose (DPPR) synthase (UbiA), which catalyzes the transfer of 5-phospho-ribofuranose-pyrophosphate (pRpp) to decaprenol phosphate to form DPPR. Glycosyl compositional analysis of cell walls extracted from a C. glutamicum::ubiA mutant revealed a galactan core consisting of alternating beta(1-->5)-Galf and beta(1-->6)-Galf residues, completely devoid of arabinan and a concomitant loss of cell-wall-bound mycolic acids. In addition, in vitro assays demonstrated a complete loss of arabinofuranosyltransferase activity and DPA biosynthesis in the C. glutamicum::ubiA mutant when supplemented with p[14C]Rpp, the precursor of DPA. Interestingly, in vitro arabinofuranosyltransferase activity was restored in the C. glutamicum::ubiA mutant when supplemented with exogenous DP[14C]A substrate, and C. glutamicum strains deficient in ubiA, emb, and aftA all exhibited different levels of DPA biosynthesis.  相似文献   

2.
The biosynthesis of the cell wall polysaccharide and peptidoglycan of group A and A-486-Var streptococci was studied with N-acetyl-[14C]glucosamine, UDP-N-acetyl-[14C]glucosamine, and [14C]glucose. The incorporation of N-acetyl-[14C]-glucosamine into the cell wall four times greater in the A-486-Var cells than in the group A cells. However, the percentage of the total label incorporated into the cell wall polysaccharide at 37 degrees C by the A-486-Var strain was 12%, compared with 66% for the group A cells. When the A-486-Var was grown at 22 degrees C, the proportion of the label incorporated into the cell wall polysaccharide increased to 41%. At 37 degrees C, N-acetyl-[14C]glucosamine was incorporated preferentially into the peptidoglycan of the A-486-Var; almost three times as much of the label was incorporated into the peptidoglycan at 37 degrees C as was incorporated at 22 degrees C. Studies with protoplast membranes of these organisms showed similar differences, with a fourfold greater uptake of UDP-N-acetyl-[14C]glucosamine by the A-486-Var membranes at both incubation temperatures. These studies suggest that a defect in the incorporation of N-acetylglucosamine into the side chain of the polysaccharide is present in the A-486-Var strain at a step following the synthesis of UDP-N-acetylglucosamine. This defect, which may involve the UDP-N-acetylglucosamine transferase, is temperature dependent in the A-486-Var strain.  相似文献   

3.
The effect of the beta-lactam antibiotics penicillin G and mecillinam on the incorporation of peptidoglycan into pre-formed cell wall peptidoglycan was studied with wall membrane enzyme preparations from Gaffkya homari. Using UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) as precursors the incorporation of peptidoglycan into the pre-existing cell wall of G. homari was inhibited to an extent of 50% (ID50 value) at a concentration of 0.25 mug of penicillin G/ml. With UDP-GlcNAc and UDP-MurNAc-tetrapeptide as precursors the ID50 value was about 2500-fold greater (630 mug/ml). The inhibition by penicillin G of the incorporation of peptidoglycan from UDP-MurNAc-[14C]Lys-pentapeptide could be overcome by addition of non-radioactive UDP-MurNAc-tetrapeptide to the incubation mixture. In the presence of 5 mug of penicillin G/ml the incorporation of peptidoglycan formed from the mixture of UDP-MurNAc-Ala-DGlu-Lys-D-[14C]Ala-D[14C]Ala and non-radioactive UDP-MurNAc-tetrapeptide proceeded virtually without release of D-[14C]alanine by transpeptidase activity. The enzyme preparation also exhibited DD-carboxypeptidase activity which was only slightly more sensitive to penicillin G and mecillinam than was the incorporation of peptidoglycan into the cell wall. Since the ID50 values for the beta-lactam antibiotics are similar to the concentrations required to inhibit the growth of G. homari to an extent of 50%, the DD-carboxypeptidase must be the killing site of both penicillin G and mecillinam.  相似文献   

4.
Cultures of a stable L-phase variant of Streptococcus faecium F24 produced and retained peptidoglycan precursors intracellularly over the entire growth cycle in a chemically defined medium. The identity of the most abundant precursor, UDP N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine (UDP-MurNAc-pentapeptide), was confirmed by demonstrating in vitro the presence of enzymes required for the cytoplasmic stage of peptidoglycan biosynthesis. The initial membrane-bound reaction in peptidoglycan biosynthesis involving phospho-MurNAc-pentapeptide translocase and undecaprenyl-phosphate membrane carrier was catalyzed by protoplast membrane preparations but not by L-phase membrane preparations. However, both protoplast and L-phase membranes incorporated radioactivity from dTDP-L-[14C]rhamnose, the presumed precursor to a non-peptidoglycan cell surface component, into high-molecular-weight material. dTDP-L-rhamnose did not accumulate in growing cultures but was synthesized from D-glucose-1-phosphate and dTTP by cell-free extracts of the streptococcus and L-phase variant. Neither rhamnose- nor muramic acid-containing compounds were detected in culture fluids. It is suggested that continued inhibition of cell wall biosynthesis in this stable L-phase variant is the result of a defect expressed at the membrane stage of peptidoglycan biosynthesis specifically involving the translocation step.  相似文献   

5.
Glycosyltransferases (GTs) play a crucial role in mycobacterial cell wall biosynthesis and are necessary for the survival of mycobacteria. Hence, these enzymes are potential new drug targets for the treatment of tuberculosis (TB), especially multiple drug-resistant TB (MDR-TB). Herein, we report the efficient syntheses of Araf(alpha 1-->5)Araf, Galf(beta 1-->5)Galf, and Galf(beta 1-->6)Galf disaccharides possessing a 5-N,N-dimethylaminonaphthalene-1-sulfonamidoethyl (dansyl) unit that were prepared as fluorescent disaccharide acceptors for arabinosyl- and galactosyl-transferases, respectively. Such analogs may offer advantages relative to radiolabeled acceptors or donors for studying the enzymes and for assay development and compound screening. Additionally, analogs possessing a 5-azidonaphthalene-1-sulfonamidoethyl unit were prepared as photoaffinity probes for their potential utility in studying active site labeling of the GTs (arabinosyl and galactosyl) in Mycobacterium tuberculosis (MTB). Beyond their preparation, initial biological testing and kinetic analysis of these disaccharides as acceptors toward glycosyltransferases are also presented.  相似文献   

6.
The attachment sites for the two major cell wall polysaccharides, the type-and group-specific antigens of a serotype III group B streptococcus (GBS) were investigated with [14C]lysine to label the peptide portion of the peptidoglycan and [3H]acetate to label both polysaccharide antigens as well as the glycan backbone of the peptidoglycan. Mutanolysin-treated cell walls were subjected to trypsin digestion, followed by exhaustive beta-elimination with 6N ammonium hydroxide at 37°C. The resulting products were purified by column chromatography prior to chemical, immunological, and high-voltage electrophoresis analyses. Data from these studies indicated that both cell wall polymers are covalently attached to the peptidoglycan via the peptide unit. Additionally, during synthesis and assembly both antigens attached only to nascent peptidoglycan.  相似文献   

7.
The cell wall mycolyl-arabinogalactan–peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis and is the target of several antitubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. A bioinformatics approach identified putative integral membrane proteins, MSMEG2785 in Mycobacterium smegmatis , Rv2673 in Mycobacterium tuberculosis and NCgl1822 in Corynebacterium glutamicum , with 10 predicted transmembrane domains and a glycosyltransferase motif (DDX), features that are common to the GT-C superfamily of glycosyltransferases. Deletion of M. smegmatis MSMEG2785 resulted in altered growth and glycosyl linkage analysis revealed the absence of AG α(1→3)-linked arabinofuranosyl (Ara f ) residues. Complementation of the M. smegmatis deletion mutant was fully restored to a wild-type phenotype by MSMEG2785 and Rv2673, and as a result, we have now termed this previously uncharacterized open reading frame, a rabino f uranosyl t ransferase C ( aftC ). Enzyme assays using the sugar donor β- d -arabinofuranosyl-1-monophosphoryl-decaprenol (DPA) and a newly synthesized linear α(1→5)-linked Ara5 neoglycolipid acceptor together with chemical identification of products formed, clearly identified AftC as a branching α(1→3) arabinofuranosyltransferase. This newly discovered glycosyltransferase sheds further light on the complexities of Mycobacterium cell wall biosynthesis, such as in M. tuberculosis and related species and represents a potential new drug target.  相似文献   

8.
Cadaverine was found to exist as a component of cell wall peptidoglycan of Selenomonas ruminantium, a strictly anaerobic bacterium. [14C]cadaverine added to the growth medium was incorporated into the cells, and about 70% of the total radioactivity incorporated was found in the peptidoglycan fraction. When the [14C]cadaverine-labeled peptidoglycan preparation was acid hydrolyzed, all of the 14C counts were recovered as cadaverine. The [14C]cadaverine-labeled peptidoglycan preparation was digested with lysozyme into three small fragments which were radioactive and were positive in ninhydrin reaction. One major spot, a compound of the fragments, was composed of alanine, glutamic acid, diaminopimelic acid, cadaverine, muramic acid, and glucosamine. One of the two amino groups of cadaverine was covalently linked to the peptidoglycan, and the other was free. The chemical composition of the peptidoglycan preparation of this strain was determined to be as follows: L-alanine-D-alanine-D-glutamic acid-meso-diaminopimelic acid-cadaverine-muramic acid-glucosamine (1.0:1.0:1.0:1.0:1.1:0.9:1.0).  相似文献   

9.
Fusobacterium nucleatum was grown in the presence of [14C]UDP. By means of sequential precipitation and chromatographic separation of the cytoplasmic content, a peptidoglycan [14C]UDP pentapeptide containing lanthionine was isolated. This finding indicates that lanthionine is synthesized and incorporated as such during the assembly of the peptidoglycan.  相似文献   

10.
The possibility of the Rv3782 protein of Mycobacterium tuberculosis being a putative galactosyl transferase (GalTr) implicated in galactan synthesis arose from its similarity to the known GalTr Rv3808c, its classification as a nucleotide sugar-requiring inverting glycosyltransferase (GT-2 family), and its location within the "possible arabinogalactan biosynthetic gene cluster" of M. tuberculosis. In order to study the function of the enzyme, active membrane and cell wall fractions from Mycobacterium smegmatis containing the overexpressed Rv3782 protein were incubated with endogenous decaprenyldiphosphoryl-N-acetylglucosaminyl-rhamnose (C(50)-P-P-GlcNAc-Rha) as the primary substrate for galactan synthesis and UDP-[(14)C]galactopyranose as the immediate precursor of UDP-[(14)C]galactofuranose, the ultimate source of all of the galactofuranose (Galf) units of galactan. Obvious increased and selective synthesis of C(50)-P-P-GlcNAc-Rha-Galf-Galf, the earliest product in the pathway leading to the fully polymerized galactan, was observed, suggesting that Rv3782 encodes a GalTr involved in the first stages of galactan synthesis. Time course experiments pointed to a possible bifunctional enzyme responsible for the initial synthesis of C(50)-P-P-GlcNAc-Rha-Galf, followed by immediate conversion to C(50)-P-P-GlcNAc-Rha-Galf-Galf. Thus, Rv3782 appears to be the initiator of galactan synthesis, while Rv3808c continues with the subsequent polymerization events.  相似文献   

11.
Koo SJ  Neal JC  DiTomaso JM 《Plant physiology》1996,112(3):1383-1389
The mode of action of the herbicide 3,7-dichloroquinolinecar-boxylic acid (quinclorac) was examined by measuring incorporation of [14C]glucose, [14C]acetate, [3H]thymidine, and [3H]uridine into maize (Zea mays) root cell walls, fatty acids, DNA, and RNA, respectively. Among the precursors examined, 10 [mu]M quinclorac inhibited [14C]glucose incorporation into the cell wall within 3 h. Fatty acid and DNA biosynthesis were subsequently inhibited, whereas RNA biosynthesis was unaffected. In contrast to the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile, quinclorac strongly inhibited cellulose and a hemicellulose fraction presumed to be glucuronoarabinoxylan. However, the synthesis of (1->3),(1->4)-[beta]-D-glucans was only slightly inhibited. The degree of inhibition was time- and dose-dependent. By 4 h after treatment, the concentration that inhibited [14C]glucose incorporation into the cell wall, cellulose, and the sensitive hemicellulose fraction by 50% was about 15, 5, and 20 [mu]M, respectively. Concomitant with an inhibition of [14C]glucose incorporation into the cell wall, quinclorac treatment led to a marked accumulation of radioactivity in the cytosol. The increased radioactivity was found mostly in glucose and fructose. However, total levels of glucose, fructose, and uridine diphosphate-glucose were not changed greatly by quinclorac. These data suggest that quinclorac acts primarily as a cell-wall biosynthesis inhibitor in a susceptible grass by a mechanism that is different from that of 2,6-dichlorobenzonitrile.  相似文献   

12.
13.
The synthesis of peptidoglycan by an autolysin-deficient beta-lactamase-negative mutant of Bacillus licheniformis was studied in vivo in the absence of protein synthesis. Benzylpenicillin and cephaloridine inhibited the formation of cross-bridges between newly synthesized peptidoglycan and the pre-existing cell wall. This inhibition, detected by measurement of the incorporation of N-acetyl[14C]glucosamine into the glycan fraction of the cell wall, was reversed by treatment with beta-lactamase and washing. Inhibition of D-alanine carboxypeptidase by benzylpenicillin was not reversed under similar conditions. Cells in which the initial penicillin inhibition of transpeptidation had been reversed showed an increased sensitivity to a subsequent addition of the antibiotic. Chemical analysis of peptidoglycan synthesized after reversal of penicillin inhibition revealed the presence of excess of alanine resulting from the continued inhibition of D-alanine carboxypeptidase. When the cell walls were digested to yield muropeptides so that the degree of cross-linking could be measured, the product after reversal of penicillin inhibition contained fewer cross-links than did the control preparation. Cultures treated with benzylpenicillin and cephaloridine continued to synthesize uncross-linked soluble peptidoglycan, which accumulated in the medium. This soluble material was all newly synthesized peptidoglycan and did not result from autolysis of the bacteria. The average chain lengths of the glycan synthesized in vivo and released as soluble peptidoglycan in the presence of both benzylpenicillin and cephaloridine were similar to those found previously in this organism.  相似文献   

14.
Galactofuranose (Galf) is the five-membered ring form of galactose. It is widely distributed among several branches of the eukaryotic kingdom. This review highlights recent advances in our understanding of the biosynthesis and function of Galf-containing glycoconjugates in fungal Aspergillus spp. and the protozoan trypanosomatid parasites. We give an overview of the biosynthetic pathways leading to the production of glycolipids, glycoproteins and polysaccharides containing Galf in these species and their biological relevance. Remarkably, modification of the cell surface caused by Galf absence often results in morphological abnormalities and an impaired cell wall function in these organisms. Galf-deficient mutants are generally hypersensitive to drugs, exhibit a constitutive osmotic stress phenotype and/or have an attenuated virulence. Since Galf has never been found in mammals and higher plants, Galf-biosynthetic pathways have raised much interest as targets for drug development to combat microbial infections.  相似文献   

15.
The mycobacterial cell wall is a potential target for new drug development. Herein we report the preparation and activity of several n-octyl-5-(alpha-D-arabinofuranosyl)-beta-D-galactofuranoside derivatives. A cell-free assay system has been utilized for determination of the ability of disaccharide analogues to act as arabinosyltransferase acceptors using [14C]-DPA as the glycosyl donor. In addition, in vitro inhibitory activity has been determined in a colorimetric broth microdilution assay system against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC). One of these disaccharides showed moderate activity against MTB. The biological evaluation of these disaccharides suggests that more hydrophobic analogues with a blocked reducing end showed better activity as compared to a totally deprotected disaccharide that more closely resembles the natural substrates in cell wall biosynthesis.  相似文献   

16.
Protoplasts (autoplasts) of Streptococcus faecalis were produced by the action of native autolytic N-acetylmuramidase in the absence of added peptidoglycan hydrolases and were grown in osmotically stabilized medium containing L-[3H]lysine and D-[14C]alanine. To reduce the level of muralytic hydrolysis of glycan chains during growth, heat-inactivated cell walls were added to the medium to bind autolytic enzyme, and tetracycline (1 mug/ml) was added to inhibit further enzyme synthesis. Under these conditions, protoplasts synthesized newly labeled peptidoglycan in the form of soluble, infrequently peptide cross-linked glycan chains which were released into the supernatant medium. These relatively large glycan chains were not transferred to exogenously added cell walls.  相似文献   

17.
As part of our research interest directed toward the development of antimycobacterial agents, we have investigated compounds based on galactofuranose (Galf), an essential cell wall component of mycobacteria. The objective of this study was to explore structure activity relationships of Galf thioglycosides with straight chain and branched aglycons. Acylated Galf 9-heptadecyl thioglycoside was prepared by Lewis acid-catalyzed thioglycosidation of 1,2,3,5,6-penta-O-acyl-D-galactofuranose with 9-heptadecanethiol, and subsequently converted to the corresponding sulfone using m-CPBA. Both Galf 9-heptadecyl thioglycoside and sulfone displayed in vitro inhibition (MIC) of the growth of Mycobacterium smegmatis below 5 microg/mL, while Galf 1-octyl thioglycoside gave no inhibition at or below 32 microg/mL.  相似文献   

18.
Distribution of radiolabelling in different parts of the newly synthesized mycolic acids, by a cell-free system from Mycobacterium aurum previously described, is examined, [1-14C]acetate being the precursor. By oxidation cleavage of mycolic acids and examination of the fragments, it was shown that acetate was not uniformly incorporated into the molecule: the methyl terminal part was not labelled, while the central fragments--between unsaturations or between oxygenated functions (oxo or ester) and unsaturations--presented the major part of radioactivity, suggesting the elongation of a preformed compound that the cell-free extract was unable to synthesize. Moreover, the side-chain R2-CH2-COOH was only weakly labelled compared to the central fragments. Since non-hydroxylated fatty acids were not synthesized by the system, it is suggested that de novo C18 fatty acids may be elongated with C2 units by the cell-free extract into C22 fatty derivative, only a low level of labelling being recorded (two C2 units for all the molecule). A scheme is proposed to summarize the main results. Identification of meso-DAP which is a characteristic amino-acid of the peptidoglycan in Actinomycetes and analysis of the profiles of total fatty esters, demonstrated that the cell-free extract is partly constituted by fragments of the cell wall as has already been noticed by examination of micrographs of the extract.  相似文献   

19.
Mycobacterium tuberculosis ArfA (Rv0899) is a membrane protein encoded by an operon that is required for supporting bacterial growth in acidic environments. Its C-terminal domain (C domain) shares significant sequence homology with the OmpA-like family of peptidoglycan-binding domains, suggesting that its physiological function in acid stress protection may be related to its interaction with the mycobacterial cell wall. Previously, we showed that ArfA forms three independently structured modules, and we reported the structure of its central domain (B domain). Here, we describe the high-resolution structure and dynamics of the C domain, we identify ArfA as a peptidoglycan-binding protein and we elucidate the molecular basis for its specific recognition of diaminopimelate-type peptidoglycan. The C domain of ArfA adopts the characteristic fold of the OmpA-like family. It exhibits pH-dependent conformational dynamics (with significant heterogeneity at neutral pH and a more ordered structure at acidic pH), which could be related to its acid stress response. The C domain associates tightly with polymeric peptidoglycan isolated from M. tuberculosis and also associates with a soluble peptide intermediate of peptidoglycan biosynthesis. This enabled us to characterize the peptidoglycan binding site where five highly conserved ArfA residues, including two key arginines, establish the specificity for diaminopimelate- but not Lys-type peptidoglycan. ArfA is the first peptidoglycan-binding protein to be identified in M. tuberculosis. Its functions in acid stress protection and peptidoglycan binding suggest a link between the acid stress response and the physicochemical properties of the mycobacterial cell wall.  相似文献   

20.
It was shown that 3-amino-3-deoxy-D-glucose, one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., inhibits the bacterial synthesis of cell wall. The antibiotic (100 μg/ml) significantly inhibits the growth of Straphylococcis aureus FDA 209P as well as the incorporation of DL-[14C]alanine into the acid-insoluble macromolecular fraction of its growing cells in the presence of chloramphenicol (100 μg/ml). In contrast, the antibiotic doed not affect the incorporation of [3H]thymidine, [3H]uridine and L-[14C]leucine. The other constituents of kanamycin, 6-amino-6-deoxy-D-glucose and deoxystreptamine do not inhibit the synthesis of bacterial cell wall peptidoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号