首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Na(+)-K+ and Mg(2+)-tissue ATPases of the freshwater crab Oziotelphusa senex senex showed increasing inhibition when exposed to a sublethal concentration (1.86 mg/l = 0.1 of LC50) of endosulfan for 1-30 days. 2. Na(+)-K(+)-ATPase activity in all tissues (thoracic nerve mass, gill, hepatopancreas and claw muscle) was higher than Mg(2+)-ATPase activity. 3. After 30 days exposure tissue Mg(2+)-ATPase was less affected than Na(+)-K(+)-ATPase. 4. Crabs exposed to endosulfan and then returned to uncontaminated water showed greater recovery of Mg(2+)-ATPase than Na(+)-K(+)-ATPase with 90-95% recovery after 1 day exposure and 60-65% recovery after 30 days exposure. 5. Changes in behaviour of the crabs were noted after 7 days exposure to endosulfan with progressive loss of coordination, decreased activity and increased exudation of mucus.  相似文献   

2.
The activities of both sarcolemmal (SL) Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg.kg(-1).day(-1)), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities. Protein content and mRNA levels for Na(+)/Ca(2+) exchanger as well as Na(+)-K(+)-ATPase alpha(1)-, alpha(2)- and beta(1)-isoforms were depressed, whereas those for alpha(3)-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the failing heart by preventing changes in gene expression for SL proteins.  相似文献   

3.
Wang YX  Lu LQ  Wang XY  Mu J  Zeng XJ  Zhang LK  Tang CS  Hao G 《生理学报》2008,60(1):23-28
采用Langendorff离体灌流装置,通过停灌40 min/复灌30 min复制大鼠心肌缺血/再灌注(ischemia/reperfusion,IR)损伤模型,观察11,12-环氧二十碳三烯酸(11,12-epoxyeicosatrienoic acid,11,12-EET)预处理和后处理对心肌线粒体功能以及心功能的影响,探讨11,12-EET顸处理和后处理对IR大鼠心肌的作用及其机制.将30只Sprague-Dawley大鼠随机分为对照组、IR组、EET预处理组(Pre-EET)、EET后处理组(Post-EET),每组6只.除对照组外,其它各组全心缺血40 min,再灌注30 min.监测左心室内压差(ALVP)和左心室内压升降的最大变化率(±dp/dtmax)等心功能指标,测定灌流液中乳酸脱氢酶(1actate dehydrogenase,LDH)的活性.灌流结束后,测定心肌线粒体琥珀酸脱氢酶(succinate dehydrogenase,SDH)、Ca"ATPase、Na - K -ATPase活性以及心肌超氧化物歧化酶(superoxide dismutase,SOD)活性、丙二醛(malondialdehyde,MDA)含量.结果显示:(1)与IR组相比,Pre-EET组及Post.EET组Na -K -ATPase和SDH活性均增强,Ca2 -ATPase活性均减弱,有显著性差异(P<0.05);而Pre-EET与Post-EET组间没有显著性差异.(2)与IR组相比,Pre-EET组及Post-EET组心功能明显改善,LDH漏出显著减少,心肌SOD活性明显增强,MDA含量明显降低,有显著性差异(P<0.05);而Pre-EET与Post-EET组间没有显著性差异.结果表明,11,12-EET预处理及后处理均可通过上调心肌线粒体Na -K -ATPase、SDH活性以及下调Ca2 -ATPase活性改善线粒体功能和心肌能量代谢,拮抗心肌IR损伤;11,12-EET预处理及后处理还可通过提高心肌SOD活性、降低MDA含量改善IR心肌的氧化应激.  相似文献   

4.
Na(+)-K(+)-ATPase is arguably the most important enzyme in the animal cell plasma membrane, but the role of the membrane in its regulation is poorly understood. We investigated the relationship between Na(+)-K(+)-ATPase and membrane microdomains or "lipid rafts" enriched in sulfatide (sulfogalactosylceramide/SGC), a glycosphingolipid implicated as a cofactor for this enzyme, in the basolateral membrane of rainbow trout gill epithelium. Our studies demonstrated that when trout adapt to seawater (33 ppt), Na(+)-K(+)-ATPase relocates to these structures. Arylsulfatase-induced desulfation of basolateral membrane SGC prevented this relocation and significantly reduced Na(+)-K(+)-ATPase activity in seawater but not freshwater trout. We contend that Na(+)-K(+)-ATPase partitions into SGC-enriched rafts to help facilitate the up-regulation of its activity during seawater adaptation. We also suggest that differential partitioning of Na(+)-K(+)-ATPase between these novel SGC-enriched regulatory platforms results in two distinct, physiological Na(+) transport modes. In addition, we extend the working definition of cholesterol-dependent raft integrity to structural dependence on the sulfate moiety of SGC in this membrane.  相似文献   

5.
I Sall  P Metais  G Ferard 《Enzyme》1977,22(3):158-165
Subcellular fraction (brush border, mitochondria, microsomes and plasma membranes) are isolated from the rat intestinal epithelial cells. A comparison was made between the effect of cold storage, freeze-thawing, heating and of some chemicals (DMSO, DTT, glycerol, sucrose) on the stability of Mg2+ and (Na+-K+) dependent ATPases in these fractions in order to determine possible difference linked to the localization in the enterocyte. Enzymatic activities were found more stable at -20 degrees C than at +4 degrees C. Microsomal (Na+-K+)-ATPase increased in activity until the 8th day, then declined. Brush border (Na+-K+)-ATPase was the least resistant of all fractions. For Mg2+-ATPase, that from mitochondria was that had lost much more activity (84%) in 15 days at +4 degrees C. With freeze-thawing there was a comparable decrease in all activities (20-35%). by heating between 35 and 60 degrees C, Mg2+-ATPase was shown to be more heat resistant than (Na+-K+)-ATPase. The addition of some stabilizing chemicals (DMSO, glycerol, sucrose) improved the heat stability of the two enzymes: better results were obtained with glycerol for Mg2+-ATPase and sucrose for (Na+-K+)-ATPase. These differences might be due to the compositon in membraine lipids or to the nature of the enzymes studied.  相似文献   

6.
Calmodulin was purified from goat erythrocyte hemolysate using heat treatment and Sephadex G-100 gel filtration chromatography. The molecular weight and Stokes, radius of the purified calmodulin was determined. The goat erythrocyte calmodulin stimulated (Ca(2+)-Mg2+)-ATPase but not (Mg2+)-ATPase and (Na(+)-K(+)-Mg2+)-ATPase. The (Ca(2+)-Mg2+)-ATPase of the erythrocyte membrane derived from human, rat, rabbit and pig were significantly stimulated.  相似文献   

7.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

8.
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MC-LReq. microg/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3, 12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits.  相似文献   

9.
The ontogenetic development of the rat brain cortex Na+, K(+)-ATPase and Mg(2+)-ATPase activities under female ethanol (20% v/v) consumption in the third trimester of gestation or in postpartum period was studied. The weight characteristics (body, whole brain and cortex weight) of viable rats on the first day after birth were not affected critically by prenatal alcohol exposure. It is revealed that the delay of postnatal rat growth 10 days after birth under translactational ethanol consumption is accompanied by reliable decrease of plasma membrane Na+, K(+)-ATPase activity in comparison with control animals. The comparable decrease in activities was observed for the ouabain-sensitive and ouabain-resistant Na+, K(+)-ATPase components (isoform species). From the 20th day the differences in enzyme activity were not revealed. Mg(2+)-ATPase increases in postnatal period independent of Na+, K(+)-ATPase activity and it remains insensitive to postnatal maternal alcohol intake. It is suggested, the first ten day period of lactation is critical for ethanol effect on the developmental control of the brain Na+, K(+)-ATPase functional expression and the course of adaptive processes in the rat organism.  相似文献   

10.
We investigated the relationship between body size, Na(+)-K(+)-ATPase molecular activity, and membrane lipid composition in the kidney of five mammalian and eight avian species ranging from 30-g mice to 280-kg cattle and 13-g zebra finches to 35-kg emus, respectively. Na(+)-K(+)-ATPase activity was found to be higher in the smaller species of both groups. In small mammals, the higher Na(+)-K(+)-ATPase activity was primarily the result of an increase in the molecular activity (turnover rate) of individual enzymes, whereas in small birds the higher Na(+)-K(+)-ATPase activity was the result of an increased enzyme concentration. Phospholipids from both mammals and birds contained a relatively constant percentage of unsaturated fatty acids; however, phospholipids from the smaller species were generally more polyunsaturated, and a complementary significant allometric increase in monounsaturate content was observed in the larger species. In particular, the relative content of the highly polyunsaturated docosahexaenoic acid [22:6(n-3)] displayed the greatest variation with body mass, scaling with allometric exponents of -0.21 and -0.26 in the mammals and birds, respectively. This allometric variation in fatty acid composition was correlated with Na(+)-K(+)-ATPase molecular activity in mammals, whereas in birds molecular activity only correlated with membrane cholesterol content. These relationships are discussed with respect to the metabolic intensity of different-sized animals.  相似文献   

11.
The effect of phospholipase C on two isozymes (alpha (+) and alpha forms) of rat brain (Na+ + K+)-ATPase and the temperature-dependence of their activities were investigated. Phospholipase C from Clostridium welchii inhibited the activities of the enzymes treated with and without pyrithiamin or N-ethylmaleimide, a preferential inhibitor of the alpha (+) form, but the extent of the inhibition was higher in the control enzyme than in the treated enzymes. The treatment of the (Na+ + K+)-ATPase with phospholipase C altered a ratio between high- and low-affinity components for ouabain inhibition. It also caused the similar change in a ratio between the alpha (+) and alpha forms of Na+-stimulated phosphorylation from [gamma-32P]ATP. These findings indicate that the alpha (+) form of rat brain (Na+ + K+)-ATPase is more sensitive to phospholipase C than the alpha form. Analysis of Arrhenius plots of the activities of the control and pyrithiamin-treated enzymes showed that there was a difference between the two enzymes in a break point. We suggest that two isozymes of rat brain (Na+ + K+)-ATPase differ in the interaction with phospholipids or in the lipid-environment.  相似文献   

12.
The aim of this study was to investigate the effect of different cytidine-5'-diphosphocholine (CDP-choline) concentrations (0.1-1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg(2+)-ATPase activities in homogenates of adult and aged rat hippocampi. Tissues were homogenised, centrifuged at 1000 x g for 10 min and in the supernatant, AChE activity and Na+,K(+)-ATPase and Mg(2+)-ATPase activities were determined according to Ellman's method and Bowler's and Tirri's method, respectively. After an 1-3 h preincubation of the homogenised tissue with CDP-choline, a maximal AChE stimulation of about 25% for both adult and aged rats (p < 0.001) and a Na+,K(+)-ATPase activation of about 50% for adult rats (p < 0.001) and about 60% for aged rats (p < 0.001) were observed, while hippocampal Mg(2+)-ATPase activity was not influenced in either adult or aged animals. It is suggested that: CDP-choline can restore hippocampal AChE and Na+,K(+)-ATPase activities in the aged rat and thus it may play a role in improving memory performance which is impaired by aging and some neuronal disturbances.  相似文献   

13.
Kinetics and inhibition of Na(+)/K(+)-ATPase and Mg(2+)-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu(2+), Zn(2+), Fe(2+) and Co(2+)) and heavy metals (Hg(2+) and Pb(2+)) ions were studied. All investigated metals produced a larger maximum inhibition of Na(+)/K(+)-ATPase than Mg(2+)-ATPase activity. The free concentrations of the key species (inhibitor, MgATP(2-), MeATP(2-)) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu(2+)/Fe(2+) or Hg(2+)/Pb(2+) caused additive inhibition, while Cu(2+)/Zn(2+) or Fe(2+)/Zn(2+) inhibited Na(+)/K(+)-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu(2+)/Fe(2+) or Cu(2+)/Zn(2+) inhibited Mg(2+)-ATPase activity synergistically, while Hg(2+)/Pb(2+) or Fe(2+)/Zn(2+) induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na(+)/K(+)-ATPase activity by reducing the maximum velocities (V(max)) rather than the apparent affinity (Km) for substrate MgATP(2-), implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg(2+)-ATPase activity by Zn(2+), Fe(2+) and Co(2+) as well as kinetic analysis indicated two distinct Mg(2+)-ATPase subtypes activated in the presence of low and high MgATP(2-) concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na(+)/K(+)-ATPase with various potencies. Furthermore, these ligands also reversed Na(+)/K(+)-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg(2+)-induced inhibition was not obtained.  相似文献   

14.
Cultured rat cardiac myocytes and A7r5 cells were transfected with an adenoviral vector used earlier for in vivo expression of functional alpha(2)-isoform of the catalytic subunit of rat Na(+)-K(+)-ATPase. Expressions of truncated forms of alpha(2), but little or no intact alpha(2), were detected, suggesting the rapid degradation of alpha(2) in these cultured cells. In neonatal myocytes normally containing the alpha(1)- and the alpha(3)-isoforms, expression of the alpha(2)-fragment led to 1) a significant decrease in the level of endogenous alpha(1)-protein and a modest decrease in alpha(3)-protein, 2) decreases in mRNAs of alpha(1) and alpha(3), 3) decrease in Na(+)-K(+)-ATPase function measured as ouabain-sensitive Rb(+) uptake, 4) increase in intracellular Ca(2+) concentration similar to that induced by ouabain, and 5) eventual loss of cell viability. These findings indicate that the alpha(2)-fragment downregulates endogenous Na(+)-K(+)- ATPase most likely by dominant negative interference either with folding and/or assembly of the predominant housekeeping alpha(1)-isoform or with signal transducing function of the enzyme. Demonstration of rise in intracellular Ca(2+) resulting from alpha(1)-downregulation 1) does not support the previously suggested special roles of less abundant alpha(2)- and alpha(3)-isoforms in the regulation of cardiac Ca(2+), 2) lends indirect support to proposals that observed decrease in total Na(+)-K(+)-ATPase of the failing heart may be a mechanism to compensate for impaired cardiac contractility, and 3) suggests the potential therapeutic utility of dominant negative inhibition of Na(+)-K(+)-ATPase.  相似文献   

15.
In the present work we reported the results of the study of erythrocyte membrane Na+,K(+)-adenosine triphosphatase (ATPase) and Mg(2+)-ATPase in patients with essential hypertension and controls. In the 40 patients with hypertension, a more marked decrease of Na+, K(+)-ATPase was observed. The behavior of the enzyme at Mg2+ activation, ouabain inhibition and the response to different temperature suggest the possibility of differences between the two groups. The normal erythrocyte Mg(2+)-ATPase activity in two groups suggest also the possible role of ratio Na+, K(+)-ATPase/Mg(2+)-ATPase in the study of essential hypertension. However the relevance of magnesium and Mg(2+)-ATPase to the pathogenesis of essential hypertension remains unclear but merits further study. On the basis of these considerations the aim of the present study was to identify, in a kinetic approach, the presence of different abnormalities of Na+ transport and Na+, K(+)-ATPase in erythrocytes from patients with essential hypertension. Much evidence has supported the hypothesis that essential hypertension is a heterogeneous disease in the pathophysiological mechanisms as well as in its clinical and therapeutical consideration.  相似文献   

16.
Red cell membrane alterations in human chronic fluoride toxicity.   总被引:2,自引:0,他引:2  
Red cells from humans exposed chronically to toxic levels of fluoride through drinking water showed significant increase in lipid peroxidation and membranous cholesterol and phospholipids. Additionally, electrophoretic patterns of ghost membrane proteins revealed the presence of a new band in the range of congruent to 66 Kd and increase in the high molecular weight protein and predominance of bands with a molecular weight of congruent to 93 Kd and congruent to 20 Kd. The activities of total, Na(+)-K(+)-, Mg(2+)- and Ca(2+)-ATPases were significantly decreased in the red cell ghosts of fluorotic patients.  相似文献   

17.
Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes.  相似文献   

18.
The changes in the magnesium adenosine triphosphatase (Mg2+ ATPase) and sodium-potassium adenosine triphosphatase (Na(+)-K+ ATPase) in gill, brain, liver and muscle tissues of freshwater fish, Cyprinus carpio at 6, 12, 24 and 48 hr exposure periods were studied after subjecting to sublethal concentration (10 micrograms/lit) of fenvalerate. Mg2+ ATPase and Na(+)-K+ ATPase activities were inhibited in all the tissues of fenvalerate exposed fish. The per cent inhibition increased with increase in the period of exposure and the possible reasons for the inhibition patterns are discussed.  相似文献   

19.
G Ferard  I Sall  P Metais 《Enzyme》1975,19(1):38-47
Elaboration of a semiautomated kinetic test on LKB 8600 apparatus for ATPase is described, using the PK-LDH system. As optimal ionic conditions 3 mmol-1 - minus 1 potassium chloride and 100 mmol-1 - minus 1 sodium chloride are proposed for measurement of (Na+-K+)-ATPase activities of rat intestinal brush borders. NH+4 can substitute for K+. The coefficients of variation of the method are 2.4% for Mg2+-ATPase and 4.9% for (Na+-K+)-ATPase determinations.  相似文献   

20.
The activity of the Na+-K+-ATPase along the intestinal mucosa of the gilthead seabream has been examined. Under optimal assay conditions, found at 35 degrees C, pH 7.5, 2-5 mM MgCl2, 5 mM ATP, 10 mM K+ and 200 mM Na+, maximal Na+-K+-ATPase activities were found in the microsomal fraction of pyloric caeca (PC) and anterior intestine (AI), which were more than two-fold the activity measured in the microsomes from the posterior intestine (PI). Na+-K+-ATPase activities from PC, AI and PI displayed similar pH dependence, optimal Mg2+/ATP and Na+/K+ ratios, affinities for Mg2+ and ATP, and inhibition by vanadate. However, considerable differences regarding sensitivity to ouabain, inhibition by calcium and responses to ionic strength were observed between segments. Thus, Na+-K+-ATPase activity from the AI was found to be ten-fold more sensitive to ouabain and calcium than the enzyme from the PC and PI and displayed distinct kinetic behaviours with respect to Na+ and K+, compared to PC and PI. Analysis of the data from the AI revealed the presence of two Na+-K+-ATPase activities endowed with distinguishable biochemical characteristics, suggesting the involvement of two different isozymes. Regional differences in Na+-K+-ATPase activities in the intestine of the gilthead seabream are compared with literature data on Na+-K+-ATPase isozymes and discussed on the basis of the physiological differences between intestinal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号