首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although vertebrate telomeres are highly conserved, telomere dynamics and telomerase profiles vary among species. The objective of the present study was to examine telomerase activity and telomere length profiles of transformed and non-transformed avian cells in vitro. Non-transformed chicken embryo fibroblasts (CEFs) showed little or no telomerase activity from the earliest passages through senescence. Unexpectedly, a single culture of particularly long-lived senescent CEFs showed telomerase activity after over 250 days in culture. Transformed avian lines (six chicken, two quail and one turkey) and tumor samples (two chicken) exhibited telomerase activity. Telomere length profiles of non-transformed CEF cultures derived from individual embryos of an inbred line (UCD 003) exhibited cycles of shortening and lengthening with a substantial net loss of telomeric DNA by senescence. The telomere length profiles of several transformed cell lines resembled telomere length profiles of senescent CEFs in that they exhibited little of the typical smear of terminal restriction fragments (TRFs) suggesting that these transformed cells may possess a reduced amount of telomeric DNA. These results show that avian telomerase activity profiles are consistent with the telomerase activity profiles of human primary and transformed cells. Further, monitoring of telomere lengths of primary cells provides evidence for a dynamic series of changes over the lifespan of any specific cell culture ultimately resulting in net telomeric DNA loss by senescence.  相似文献   

2.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

3.
Human fibroblasts expressing the catalytic component of human telomerase (hTERT) have been followed for 250-400 population doublings. As expected, telomerase activity declined in long term culture of stable transfectants. Surprisingly, however, clones with average telomere lengths several kilobases shorter than those of senescent parental cells continued to proliferate. Although the longest telomeres shortened, the size of the shortest telomeres was maintained. Cells with subsenescent telomere lengths proliferated for an additional 20 doublings after inhibiting telomerase activity with a dominant-negative hTERT mutant. These results indicate that, under conditions of limiting telomerase activity, cis-acting signals may recruit telomerase to act on the shortest telomeres, argue against the hypothesis that the mortality stage 1 mechanism of cellular senescence is regulated by telomere positional effects (in which subtelomeric loci silenced by long telomeres are expressed when telomeres become short), and suggest that catalytically active telomerase is not required to provide a protein-capping role at the end of very short telomeres.  相似文献   

4.
The clinical application of cell transplantation for severe heart failure is a promising strategy to improve impaired cardiac function. Recently, an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and embryonic stem cells, have become important candidates for cell sources for cardiac repair. In the present study, we focused on the placenta as a cell source. Cells from the chorionic plate in the fetal portion of the human placenta were obtained after delivery by the primary culture method, and the cells generated in this study had the Y sex chromosome, indicating that the cells were derived from the fetus. The cells potentially expressed 'working' cardiomyocyte-specific genes such as cardiac myosin heavy chain 7beta, atrial myosin light chain, cardiac alpha-actin by gene chip analysis, and Csx/Nkx2.5, GATA4 by RT-PCR, cardiac troponin-I and connexin 43 by immunohistochemistry. These cells were able to differentiate into cardiomyocytes. Cardiac troponin-I and connexin 43 displayed a discontinuous pattern of localization at intercellular contact sites after cardiomyogenic differentiation, suggesting that the chorionic mesoderm contained a large number of cells with cardiomyogenic potential. The cells began spontaneously beating 3 days after co-cultivation with murine fetal cardiomyocytes and the frequency of beating cells reached a maximum on day 10. The contraction of the cardiomyocytes was rhythmical and synchronous, suggesting the presence of electrical communication between the cells. Placenta-derived human fetal cells may be useful for patients who cannot supply bone marrow cells but want to receive stem cell-based cardiac therapy.  相似文献   

5.
6.
Telomere and telomerase in oncology   总被引:10,自引:0,他引:10  
Telomere and cell replicative senescenceTelomeres, which are located at the end of chro-mosome, are crucial to protect chromosome againstdegeneration, rearrangment and end to end fusion[1].Human telomeres are tandemly repeated units of thehexanucleotide TTAGGG. The estimated length oftelomeric DNA varies from 2 to 20 kilo base pairs,depending on factors such as tissue type and hu-man age. The buck of telomeric DNA is double-stranded, but the end of telomeric DNA consists of3' overhang of…  相似文献   

7.
Expression of the catalytic subunit of human telomerase (hTERT), in normal human fibroblasts allows them to escape replicative senescence. However, we have observed that populations of hTERT-immortalized human fibroblasts contain 3-20% cells with a senescent morphology. To determine what causes the appearance of these senescent-like cells, we used flow cytometry to select them from the population and analyzed them for various senescence markers, telomere length, and telomerase activity. This subpopulation of cells had elevated levels of p21 and hypophosphorylated Rb, but telomere length was similar to that of the immortal cells in the culture that was sorted. Surprisingly, telomerase activity in the senescent-like cells was significantly elevated compared with immortal cells from the same population, suggesting that high telomerase activity may induce the senescent phenotype. Furthermore, transfection of normal fibroblasts with a hTERT-expressing plasmid that confers high telomerase activity led to the induction of p21, a higher percentage of SA-beta-galactosidase-positive cells, and a greater number of cells entering growth arrest compared with controls. These results suggest that excessive telomerase activity may act as a hyperproliferative signal in cells and induce a senescent phenotype in a manner similar to that seen following overexpression of oncogenic Ras, Raf, and E2F1. Thus, there must be a critical threshold of telomerase activity that permits cell proliferation.  相似文献   

8.
在对山羊体细胞进行外源基因转染过程中,无论电击法或脂质体法所得到的细胞克隆都有细胞过快衰老的现象。山羊体细胞转基因后出现细胞体积增大、细胞核膨大并逐步分裂成多核、细胞质空泡化和吐核等衰老的表型特征。转基因后衰老细胞的染色体核型正常,但经细胞染色体端粒长度的Southern检测发现,转基因衰老细胞比原代胎儿成纤维细胞染色体端粒长度减少了2.56 kb,超出了正常传代40代的细胞的衰老速度,但转基因衰老细胞仍能支持核移植克隆胚胎的早期发育。  相似文献   

9.
Replicative senescence is known to be an intrinsic mechanism in determining the finite life span of in vitro cultured cells. Since this process is recognized as an evolutionarily conserved mechanism from yeast to mammalian cells, we compared the senescence-associated genetic alterations in the p53, p16(INK4a), and telomere regulatory pathways using replicative senescent human, mouse, and chicken fibroblast cells. Normal human diploid fibroblast (HDF; WI38) and chicken embryonic fibroblast (CEF) cells were shown to have a more extended in vitro proliferative potential than their mouse embryonic fibroblast (MEF) counterpart. In contrast to the HDF and CEF cells, MEF cells were shown to express telomerase mRNA and maintain telomerase activity throughout their in vitro life span. Functional p53 activity was shown to increase in the replicative senescent HDF and CEF cells, but not in replicative senescent MEF cells. On the other hand, there was a gradual elevation of p16(INK4a) expression with increased cell passages which reached a maximum in replicative senescent MEF cells. Taken together, the present study demonstrates that the p53, p16(INK4a), and telomere regulatory functions may be differentially regulated during replicative senescence in human, mouse, and chicken fibroblast cells.  相似文献   

10.
Telomerase is a ribonucleoprotein that synthesizes telomere repeats onto chromosome ends and is involved in maintaining telomere length in germline tissues and in immortal and cancer cells. In the present study, the temporal regulation of expression of telomerase activity was examined in human germline and somatic tissues and cells during development. Telomerase activity was detected in fetal, newborn, and adult testes and ovaries, but not in mature spermatozoa or oocytes. Blastocysts expressed high levels of telomerase activity as did most human somatic tissues at 16–20 weeks of development with the exception of human brain tissue. This activity could no longer be detected in the somatic tissues examined from the neonatal period onward. Neither placenta nor cultured fetal amniocytes contained detectable telomerase activity. Fetal tissues explanted into primary cell culture showed a dramatic decline in telomerase activity which became undetectable after the first passage in vitro. Elucidation of the regulatory pathways involved in the repression of telomerase activity during development may lead to the ability to manipulate telomerase levels and explore the consequences both for cellular aging and for the survival of cancer cells. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Expression of the catalytic subunit of human telomerase, hTERT, extends human primary fibroblast life span. Such life span extension has generally been reported to be accompanied by net telomere lengthening, which led to the hypothesis that it is the telomere lengthening that causes the life span extension. Here we show that hTERT+C and hTERT-FlagC, mutant telomerase proteins with either 10 additional residues or a FLAG epitope added to the hTERT C-terminus, confer significant but limited life span extension to IMR90 human primary lung fibroblasts. However, as the cells continue to grow for >100 population doublings past their normal senescence point, bulk telomere length continues to erode to lengths much shorter than those seen at the senescence of control telomerase-negative cells. Expression of hTERT+C immortalized IMR90 cells transformed by three different oncogenes. Again, bulk telomeres became much shorter than those of the control cells at crisis. Additional hTERT mutants were constructed and analyzed similarly. Enzymatically active hTERT-N125A+T126A, like other previously reported conserved GQ domain mutants and C-terminally HA-tagged hTERT, failed to extend life span. Another GQ domain mutant, hTERT-E79A, was indistinguishable from wild-type hTERT in its cell growth effects, but there was no net telomere lengthening. These results uncover further hTERT allele-specific phenotypes that uncouple telomerase activity, net telomere lengthening and life span extension.  相似文献   

12.
Telomerase immortalization of human myometrial cells   总被引:6,自引:0,他引:6  
  相似文献   

13.
We utilized the Cre/lox recombination system to transiently express the catalytic subunit of telomerase (hTERT) in normal diploid foreskin fibroblasts (BJ cells). A retroviral construct containing an hTERT cDNA, flanked by loxP-sites was introduced into near senescent BJ cells (population doubling 85). At population doubling (PD) 92, which exceeds the typical life span of these cells, we excised the gene via Cre-mediated recombination. All clones lost telomerase activity and showed telomere shortening over an additional 50 PDs. Interestingly, the average telomere length in these cells became shorter than in untreated BJ cells at senescence. This may be due to hTERT preferentially elongating the shortest telomeres, leading to greater length uniformity. In summary, transient telomerase expression and only a very small average telomere elongation by hTERT resulted in a 50% increase in life span of human fibroblasts. This suggests a potentially safe use of hTERT in tissue engineering.  相似文献   

14.
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.  相似文献   

15.
Telomerase is required for telomere maintenance and is responsible for the immortal phenotype of cancer cells. How telomerase is assembled and reaches telomeres in the context of nuclear architecture is not understood. Recently, the telomerase RNA subunit (hTR) was shown to accumulate in Cajal bodies (CBs), subnuclear structures implicated in ribonucleoprotein maturation. However, the functional relevance of this localization for telomerase was unknown. hTR localization to CBs requires a short sequence motif called the CAB box. Here, we reconstitute telomerase in human cells and determine the effects of CAB box mutations on telomere biology. We demonstrate that mutant hTR, which fails to accumulate in CBs, is fully capable of forming catalytically active telomerase in vivo but is strongly impaired in telomere extension. The functional deficiency is accompanied by a decreased association of telomerase with telomeres. Collectively, these data identify subnuclear localization as an important regulatory mechanism for telomere length homeostasis in human cells.  相似文献   

16.
Telomerase therapeutics for degenerative diseases   总被引:2,自引:0,他引:2  
Telomerase is active in early embryonic and fetal development but is down-regulated in all human somatic tissues before birth. Since telomerase is virtually absent or only transiently active in normal somatic cells throughout postnatal life, telomere length gradually decreases as a function of age in most human tissues. Although telomerase repression likely evolved as a tumor suppressor mechanism, a growing body of evidence from epidemiology and genetic studies point to a role of telomerase repression and short telomeres in a broad spectrum of diseases: (a) Humans with shorter than average telomere length are at increased risk of dying from heart disease, stroke, or infection; (b) Patients with Dyskeratosis congenita are born with shortened telomeres due to mutations in telomerase components, suffer from a variety of proliferative tissue disorders, and typically die early of bone marrow failure; and (c) Individuals with long-term chronic stress or infections have accelerated telomere shortening compared to age-matched counterparts. Telomerase activation may prove useful in the treatment of diseases associated with telomere loss. While human cells dividing in culture lose telomeric DNA and undergo changes that mirror certain age- or disease-associated changes in vivo, telomerase transduced cells have extended replicative capacities, increased resistance to stress, improved functional activities in vitro and in vivo, and no loss of differentiation capacity or growth control. In addition, telomerase transduction in vivo can prevent telomere dysfunction and cirrhotic changes in liver of telomerase knockout mice. Thus, pharmacological activation of telomerase has significant potential for the treatment of a broad spectrum of chronic or degenerative diseases.  相似文献   

17.
18.
19.
The lifespan of human fibroblasts and other primary cell strains can be extended by expression of the telomerase catalytic subunit (hTERT). Since replicative senescence is accompanied by substantial alterations in gene expression, we evaluated characteristics of in vitro-aged dermal fibroblast populations before and after immortalization with telomerase. The biological behavior of these populations was assessed by incorporation into reconstituted human skin. Reminiscent of skin in the elderly, we observed increased fragility and subepidermal blistering with increased passage number of dermal fibroblasts, but the expression of telomerase in late passage populations restored the normal nonblistering phenotype. DNA microarray analysis showed that senescent fibroblasts express reduced levels of collagen I and III, as well as increased levels of a series of markers associated with the destruction of dermal matrix and inflammatory processes, and that the expression of telomerase results in mRNA expression patterns that are substantially similar to early passage cells. Thus, telomerase activity not only confers replicative immortality to skin fibroblasts, but can also prevent or reverse the loss of biological function seen in senescent cell populations.  相似文献   

20.
王娟 《现代生物医学进展》2007,7(6):923-925,937
端粒酶几乎在所有的人类癌细胞中均异常表达,它的持久活性对肿瘤的增殖是必需的。因此,抑制端粒酶活性代表了一种新的癌症治疗机制。端粒酶全酶复合物有多处可以做为抑制剂的靶点,包括hTR、hTERT、引物锚定位点等。本文对以端粒酶RNA模板区为靶点的抗肿瘤药物设计策略进行了综述,包括对该区域进行点突变、使用反义寡核苷酸封闭模板区、改变端粒酶RNA空间构象等,并探讨了目前抑制端粒酶活性研究中存在的一些问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号