首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the endospore cell wall peptidoglycan of Bacillus subtilis has been examined. Spore peptidoglycan was produced by the development of a method based on chemical permeabilization of the spore coats and enzymatic hydrolysis of the peptidoglycan. The resulting muropeptides which were >97% pure were analyzed by reverse-phase high-performance liquid chromatography, amino acid analysis, and mass spectrometry. This revealed that 49% of the muramic acid residues in the glycan backbone were present in the delta-lactam form which occurred predominantly every second muramic acid. The glycosidic bonds adjacent to the muramic acid delta-lactam residues were resistant to the action of muramidases. Of the muramic acid residues, 25.7 and 23.3% were substituted with a tetrapeptide and a single L-alanine, respectively. Only 2% of the muramic acids had tripeptide side chains and may constitute the primordial cell wall, the remainder of the peptidoglycan being spore cortex. The spore peptidoglycan is very loosely cross-linked at only 2.9% of the muramic acid residues, a figure approximately 11-fold less than that of the vegetative cell wall. The peptidoglycan from strain AA110 (dacB) had fivefold-greater cross-linking (14.4%) than the wild type and an altered ratio of muramic acid substituents having 37.0, 46.3, and 12.3% delta-lactam, tetrapeptide, and single L-alanine, respectively. This suggests a role for the DacB protein (penicillin-binding protein 5*) in cortex biosynthesis. The sporulation-specific putative peptidoglycan hydrolase CwlD plays a pivotal role in the establishment of the mature spore cortex structure since strain AA107 (cwlD) has spore peptidoglycan which is completely devoid of muramic acid delta-lactam residues. Despite this drastic change in peptidoglycan structure, the spores are still stable but are unable to germinate. The role of delta-lactam and other spore peptidoglycan structural features in the maintenance of dormancy, heat resistance, and germination is discussed.  相似文献   

2.
The cortex peptidoglycan from endospores of Bacillus subtilis is responsible for the maintenance of dormancy. LytH (YunA) has been identified as a novel sporulation-specific component with a role in cortex structure determination. The lytH gene was expressed only during sporulation, under the control of the mother cell-specific sigma factor sigma(K). Spores of a lytH mutant have slightly reduced heat resistance and altered staining when viewed by electron microscopy. Analysis of the peptidoglycan structure of lytH mutant spores shows the loss of muramic acid residues substituted with L-alanine and a corresponding increase in muramic acid residues substituted with tetrapeptide compared to those in the parent strain. In a lytH cwlD mutant, the lack of muramic acid residues substituted with L-alanine and delta-lactam leaves 97% of residues substituted with tetrapeptide. These results suggest that lytH encodes an L-Ala-D-Glu peptidase involved in production of single L-alanine side chains from tetrapeptides in the spore cortex. The lack of di- or tripeptides in a lytH mutant reveals the enzyme is an endopeptidase.  相似文献   

3.
The composition and fine structure of the vegetative cell wall peptidoglycan from Bacillus subtilis were determined by analysis of its constituent muropeptides. The structures of 39 muropeptides, representing 97% of the total peptidoglycan, were elucidated. About 99% analyzed muropeptides in B. subtilis vegetative cell peptidoglycan have the free carboxylic group of diaminopimelic acid amidated. Anhydromuropeptides and products missing a glucosamine at the nonreducing terminus account for 0.4 and 1.5%, respectively, of the total muropeptides. These two types of muropeptides are suggested to end glycan strands. An unexpected feature of B. subtilis muropeptides was the occurrence of a glycine residue in position 5 of the peptide side chain on monomers or oligomers, which account for 2.7% of the total muropeptides. This amount is, however, dependent on the composition of the growth media. Potential attachment sites for anionic polymers to peptidoglycan occur on dominant muropeptides and account for 2.1% of the total. B. subtilis peptidoglycan is incompletely digested by lysozyme due to de-N-acetylation of glucosamine, which occurs on 17.3% of muropeptides. The cross-linking index of the polymer changes with the growth phase. It is highest in late stationary phase, with a value of 33.2 or 44% per muramic acid residue, as determined by reverse-phase high-pressure liquid chromatography or gel filtration, respectively. Analysis of the muropeptide composition of a dacA (PBP 5) mutant shows a dramatic decrease of muropeptides with tripeptide side chains and an increase or appearance of muropeptides with pentapeptide side chains in monomers or oligomers. The total muropeptides with pentapeptide side chains accounts for almost 82% in the dacA mutant. This major low-molecular-weight PBP (DD-carboxypeptidase) is suggested to play a role in peptidoglycan maturation.  相似文献   

4.
Studies of gene expression using fusions to lacZ demonstrated that the Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is in an operon with two downstream genes, spmA and spmB. Mutations affecting any one of these three genes resulted in the production of spores with reduced heat resistance. The cortex peptidoglycan in dacB mutant spores had more peptide side chains, a higher degree of peptide cross-linking, and possibly less muramic acid lactam than that of wild-type spores. These cortex structure parameters were normal in spmA and spmB mutant spores, but these spores did not attain normal spore core dehydration. This defect in spore core dehydration was exaggerated by the additional loss of dacB expression. However, loss of dacB alone did not alter the spore core water content. Spores produced by spmA and spmB mutants germinated faster than did those of the wild type. Spores produced by dacB mutants germinated normally but were delayed in spore outgrowth. Electron microscopy revealed a drastically altered appearance of the cortex in dacB mutants and a minor alteration in an spmA mutant. Measurements of electron micrographs indicate that the ratio of the spore protoplast volume to the sporoplast (protoplast-plus-cortex) volume was increased in dacB and spmA mutants. These results are consistent with spore core water content being the major determinant of spore heat resistance. The idea that loosely cross-linked, flexible cortex peptidoglycan has a mechanical activity involved in achieving spore core dehydration is not consistent with normal core dehydration in spores lacking only dacB.  相似文献   

5.
A method for the measurement of muramic lactam, which is specifically located in the cortical peptidoglycan of bacterial spores, was developed as a quantitative assay method for spore cortex content. During sporulation of Bacillus subtilis 168, muramic lactam (i.e., spore cortex) began to appear at state IV of sporulation and continued to increase over most of the late stages of sporulation. Spore cortex contents of various spo mutants of B. subitils were surveyed. Cortex was not detected in mutants in which sporulation was blocked earlier than stage II sporulation. Spores of spo IV mutant had about 40% of the cortex content of the wild-type spores. One spo III mutant had a low amount of cortex, but four others had none.  相似文献   

6.
Lysozyme from bacteriophage T4 was found to digest a soluble, uncrosslinked peptidoglycan which is secreted by cells of Micrococcus luteus when incubated in the presence of penicillin G. Analysis of the enzymatic degradation products shows that T4 acts as an endo-acetylmuramidase capable of cleaving glycosidic bonds only at muramic acid residues that are substituted with peptide side-chains. The results indicate that the secreted peptidoglycan may consist of a mixture of chains, approximately half of which are substituted by peptide side chains on most of their muramic acid residues, while the other half is made up of chains in which the muramic acid moieties are unsubstituted.  相似文献   

7.
The relation between the amount of cortex, measured as total hexosamine, as diaminopimelic acid and as muramic lactam, and the heat resistance of spores of five different strains of Bacillus stearothermophilus was studied. Electron micrographs of thin sections of the spores were made to relate the structure of the spores to chemical and thermal characteristics. It was found that the amount of the cortex was significantly related to heat resistance of the spores. Strains with more electron-dense and better organized cortices were found to express higher heat resistance.  相似文献   

8.
The relation between the amount of cortex, measured as total hexosamine, as diaminopimelic acid and as muramic lactam, and the heat resistance of spores of five different strains of Bacillus stearothermophilus was studied. Electron micrographs of thin sections of the spores were made to relate the structure of the spores to chemical and thermal characteristics. It was found that the amount of the cortex was significantly related to heat resistance of the spores. Strains with more electron-dense and better organized cortices were found to express higher heat resistance.  相似文献   

9.
The predicted amino acid sequence of Bacillus subtilis yfjS (renamed pdaA) exhibits high similarity to those of several polysaccharide deacetylases. Beta-galactosidase fusion experiments and results of Northern hybridization with sporulation sigma mutants indicated that the pdaA gene is transcribed by E(sigma)(G) RNA polymerase. pdaA-deficient spores were bright by phase-contrast microscopy, and the spores were induced to germination on the addition of L-alanine. Germination-associated spore darkening, a slow and partial decrease in absorbance, and slightly lower dipicolinic acid release compared with that by the wild-type strain were observed. In particular, the release of hexosamine-containing materials was lacking in the pdaA mutant. Muropeptide analysis indicated that the pdaA-deficient spores completely lacked muramic delta-lactam. A pdaA-gfp fusion protein constructed in strain 168 and pdaA-deficient strains indicated that the protein is localized in B. subtilis spores. The biosynthetic pathway of muramic delta-lactam is discussed.  相似文献   

10.
1. Soluble mucopeptide was prepared by lysozyme treatment of acid-extracted walls of Bacillus licheniformis N.C.T.C. 6346 and separated into fractions differing in molecular size by chromatography on Sephadex G-25 and G-50. 2. About 16% of the weight of soluble mucopeptide has a weight-average molecular weight in excess of 20000. About one half has a weight-average molecular weight of less than 2000 and the balance of soluble mucopeptide is of intermediate size. 3. In the mucopeptide fractions isolated from Sephadex there is a correlation between the weight-average molecular weight, the number of non-reducing muramic acid residues and the proportion of diaminopimelic acid residues recovered after treatment with 1-fluoro-2,4-dinitrobenzene. 4. The extent of cross-linking between peptide side chains is relatively low, even in mucopeptide material of the large molecular size. 5. The small amount of residual phosphorus present in preparations of B. licheniformis soluble mucopeptide remains associated mainly with mucopeptide material of large molecular size. 6. The mucopeptide components of lowest molecular weight are not produced as artifacts during the preparation of soluble mucopeptide, but are apparently incorporated in the insoluble mucopeptide present in walls of exponentially growing cells. 7. Soluble mucopeptide isolated in a complex with acidic polymers after lysozyme treatment of walls of B. licheniformis N.C.T.C. 6346 and Bacillus subtilis W23 retains a high molecular weight when the covalent bonds between mucopeptide and the acidic polymers are broken. 8. Pure fragments were isolated from B. licheniformis soluble mucopeptide. A major component, C1, of the material of smallest size is made up of one residue each of N-acetylglucosamine, N-acetylmuramic acid, l-alanine, glutamic acid and diaminopimelic acid. The N-acetylglucosamine is in beta-glycosidic linkage with a reducing N-acetylmuramic acid residue. The peptide unit is probably amidated. A quantitatively minor component, C2, has amino acid and amino sugar composition identical with that of component C1, but probably lacks an amide group. Another fragment, B1, is made up of two molecules of component C1 or C2 that are joined together through a molecule of d-alanine.  相似文献   

11.
The peptidoglycan of Selenomonas ruminantium, a strictly anaerobic bacterium, contains cadaverine (Y. Kamio, Y. Itoh, Y. Terawaki, and T. Kusano, J. Bacteriol. 145:122-128, 1981). This report describes the chemical structure of the peptidoglycan of this bacterium. The [14C]cadaverine-labeled peptidoglycan was degraded with the lytic enzymes prepared from Streptomyces albus G into three small fragments including a major fragment (band A compound). Bank A compound was composed of L-alanine, D-glutamic acid, meso-diaminopimelic acid, D-alanine, and cadaverine in the molar ratio 0.98:1.0:1.0:0.98:0.97. Diaminopimelic acid, L-alanine, and cadaverine were N-terminal residues in band A compound. When the [14C]cadaverine-labeled band A compound was subjected to partial acid hydrolysis, two peptide fragments were obtained. One of them consisted of diaminopimelic acid and D-alanine; diaminopimelic acid was the N-terminal amino acid, and the other fragment was composed of L-alanine, D-glutamic acid, and cadaverine, of which L-alanine and cadaverine were N-terminal. These results lead us to conclude that the primary peptide structure of band A compound is L-alanyl-D-glutamyl-meso-diaminopimelyl-D-alanine and that cadaverine links covalently to the D-glutamic acid residue.  相似文献   

12.
The Drosophila immune system is able to discriminate between classes of bacteria. Detection of Gram-positive bacteria involves a complex of two pattern recognition receptors: peptidoglycan recognition protein SA (PGRP-SA) and Gram-negative binding protein 1 (GNBP1). These activate the Toll signalling pathway. To define the cell wall components sensed by the host, we used highly purified peptidoglycan fragments of two principal Gram-positive bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae. We report that in both peptidoglycans, the minimal structure needed to activate the Toll pathway is a muropeptide dimer and that the free reducing end of the N-acetyl muramic acid residues of the muropeptides is essential for activity. Monomeric muropeptides were inactive and inhibitory in combination with dimers. Finally, peptidoglycan was degraded by the haemolymph of wild-type but not GNBP1 mutant flies. We suggest a model whereby GNBP1 is involved in the hydrolysis of Gram-positive peptidoglycan producing new glycan reducing ends, which are subsequently detected by PGRP-SA.  相似文献   

13.
The muramic lactam content of spores of Bacillus sphaericus mutants defective in meso-diaminopimelic acid synthesis increases almost linearly with an increase of meso-diaminopimelic acid concentration in the medium. Since muramic lactam content is a measure of cortex content, the amount of cortex in spores of the mutants can be easily varied by changing the meso-diaminopimelic acid concentration in the medium. Characteristic properties were tested in spores containing different amounts of cortex. Critical amounts of cortex were associated with different spore properties. Refractility and dipicolinic acid accumulation in the spores both required about 20% of the maximum cortex content (although refractility is independent of dipicolinic acid content). For xylene octanol resistance, about 25% of the maximum cortex content was required.  相似文献   

14.
Bacterial cell wall peptidoglycans are built from unbranched β-(1 → 4)-linked glycan chains composed of alternately repeating units of N-acetylglucosamine and N-acetylmuramic acid residues, with peptide side chains attached to the muramic acid residues. The glycan chains are interconnected by peptide bonds formed between the peptide side chains. Through the use of three-dimensional molecular models, two configurations of the glycan strands and the peptide side chains are described, which by their constancy of form reflect the fundamental constancies of the covalent structures. Each of these two models will accommodate any chemical modification that has been observed in bacteria without change in the configuration of the peptide backbone. Some alterations in the chemical structure, which have been sought in bacteria, but not found, would not be tolerated by the models. In these models, glycan strands are parallel, with their lengths and widths predominantly in the plane of the cell wall. The cross-bridging portions of the peptide side chains are at right angles to the glycan strand, in a separate, parallel plane. A compact model is presented in which the peptide side chain is closely appressed to the glycan strand and is stabilized by three hydrogen bonds per disaccharide–peptide subunit. In a second model, the peptide side chain is raised away from the glycan strand in an entirely extended configuration. The compact and extended forms are interconvertible. The thickness of a sheet of peptidoglycan would be from 10.6 to 11.1 Å for the compact model, and 19.1 Å for the extended model.  相似文献   

15.
A peptidoglycan-polysaccharide complex composed of N-acetylglucosamine, N-acetylmuramic acid, muramic acid 6-phosphate, L-alanine, D-alanine, D-glutamic acid, meso-diaminopimelic acid, N-acetylmannosamine, mannose, galactose, glucose, and phosphate was isolated from cell walls of the filamentous prochlorophyte Prochlorothrix hollandica; this complex was similar in chemical composition and structure to that found in cyanobacteria. Peptide patterns of partial acid hydrolysates of the isolated peptidoglycan revealed an A1 gamma structure with direct cross-linkage (m-diaminopimelic acid-D-alanine) of the peptide side chains. The degree of cross-linkage (63%) was found to be in the range of values obtained for gram-positive bacteria and cyanobacteria.  相似文献   

16.
Bacterial spore heat resistance is primarily dependent upon dehydration of the spore cytoplasm, a state that is maintained by the spore peptidoglycan wall, the spore cortex. A peptidoglycan structural modification found uniquely in spores is the formation of muramic delta-lactam. Production of muramic delta-lactam in Bacillus subtilis requires removal of a peptide side chain from the N-acetylmuramic acid residue by a cwlD-encoded muramoyl-L-Alanine amidase. Expression of cwlD takes place in both the mother cell and forespore compartments of sporulating cells, though expression is expected to be required only in the mother cell, from which cortex synthesis derives. Expression of cwlD in the forespore is in a bicistronic message with the upstream gene ybaK. We show that ybaK plays no apparent role in spore peptidoglycan synthesis and that expression of cwlD in the forespore plays no significant role in spore peptidoglycan formation. Peptide cleavage by CwlD is apparently followed by deacetylation of muramic acid and lactam ring formation. The product of pdaA (yfjS), which encodes a putative deacetylase, has recently been shown to also be required for muramic delta-lactam formation. Expression of CwlD in Escherichia coli results in muramoyl L-Alanine amidase activity but no muramic delta-lactam formation. Expression of PdaA alone in E. coli had no effect on E. coli peptidoglycan structure, whereas expression of CwlD and PdaA together resulted in the formation of muramic delta-lactam. CwlD and PdaA are necessary and sufficient for muramic delta-lactam production, and no other B. subtilis gene product is required. PdaA probably carries out both deacetylation and lactam ring formation and requires the product of CwlD activity as a substrate.  相似文献   

17.
The peptide hormones guanylin and uroguanylin are ligands of the intestinal guanylyl cyclase-C (GC-C) that is involved in the regulation of epithelial water and electrolyte transport. The small peptides contain 15 and 16 amino acids, respectively, and two disulfide bonds with a 1-3/2-4 connectivity. This structural feature causes the unique existence of two topological isoforms for each peptide in an approximate 3:2 ratio, with only one of the isoforms exhibiting GC-C-activating potential. The two uroguanylin isomers can be separated by HPLC and are of sufficient stability to be studied separately at ambient temperatures while the two guanylin isomers are rapidly interconverting even at low temperatures. Both isomers show clearly distinguishable (1)H chemical shifts. To investigate the influence of certain amino acid side chains on this isomerism and interconversion kinetics, derivatives of guanylin and uroguanylin (L-alanine scan and chimeric peptides) were designed and synthesized by Fmoc solid-phase chemistry and compared by HPLC and 2D (1)H NMR spectroscopy. Amino acid residues with the most significant effects on the interconversion kinetics were predominantly identified in the COOH-terminal part of both peptides, whereas amino acids in the central part of the peptides only moderately affected the interconversion. Thus, the conformational conversion among the isomers of both peptides is under the control of a COOH-terminal sterical hindrance, providing a detailed model for this dynamic isomerism. Our results demonstrate that kinetic control of the interconversion process can be achieved by the introduction of side chains with a defined sterical profile at suitable sequence positions. This is of potential impact for the future development of GC-C peptide agonists and antagonists.  相似文献   

18.
Bacillus anthracis spores, the infectious agents of anthrax, are notoriously difficult to remove from contaminated areas because they are resistant to many eradication methods. These resistance properties are due to the spore's dehydration and dormancy and to the multiple protective layers surrounding the spore core, one of which is the cortex. In order for B. anthracis spores to germinate and resume growth, the cortex peptidoglycan must be depolymerized. This study reports on analyses of sleL (yaaH), which encodes a cortex-lytic enzyme. The inactivation of sleL does not affect vegetative growth, spore viability, or the initial stages of germination, including dipicolinic acid release. However, mutant spores exhibit a slight delay in the loss of optical density compared to that of wild-type spores. Mutants also retain more diaminopimelic acid and N-acetylmuramic acid during germination than wild-type spores, suggesting that the cortex peptidoglycan is not being hydrolyzed as rapidly. This finding is supported by high-pressure liquid chromatography analysis of the peptidoglycan structure used to confirm that SleL acts as an N-acetylglucosaminidase. When sleL is inactivated, the cortex peptidoglycan is not depolymerized into small muropeptides but instead is retained within the spore as large fragments. In the absence of the sleL-encoded N-acetylglucosaminidase, other cortex-lytic enzymes break down the cortex peptidoglycan sufficiently to allow rapid germination and outgrowth.  相似文献   

19.
In a selected set of 44 high-resolution, non-homologous protein structures, the intramolecular hydrogen bonds or salt bridges formed by ionizable amino acid side chains were identified and analyzed. The analysis was based on the investigation of several properties of the involved residues such as their solvent exposure, their belonging to a certain secondary structural element, and their position relative to the N- and C-termini of their respective structural element. It was observed that two-thirds of the interactions made by basic or acidic side chains are hydrogen bonds to polar uncharged groups. In particular, the majority (78%) of the hydrogen bonds between ionizable side chains and main chain polar groups (sch:mch bonds) involved at least one buried atom, and in 42% of the cases both interacting atoms were buried. In α-helices, the sch:mch bonds observed in the proximity of the C- and N-termini show a clear preference for acidic and basic side chains, respectively. This appears to be due to the partial charges of peptide group atoms at the termini of α-helices, which establish energetically favorable electrostatic interactions with side chain carrying opposite charge, at distances even greater than 4.5 Å. The sch:mch interactions involving ionizable side chains that belong either to β-strands or to the central part of α-helices are based almost exclusively on basic residues. This results from the presence of main chain carbonyl oxygen atoms in the protein core which have unsatisfied hydrogen bonding capabilities.  相似文献   

20.
The peptidoglycan of all four colonial types of a number of strains of Neisseria gonorrhoeae constituted 1 to 2% of the dry weight of the cell. The chemical composition of cell types examined was similar with molar ratios of 1:1:2:1:1 for muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid, respectively. Ninety-six percent of the mass of the peptidoglycan was composed of these compounds. A lipoprotein analogous to that observed in Escherichia coli was not detected. The chain length of the glycan varied from 80 to 110 disaccharide units. The peptide contained equimolar amounts of D- and L-alanine. The rate of turnover of peptidoglycan in strain RD5 was 50% per generation. Turnover proceeded without a lag and followed first-order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号