首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.  相似文献   

2.
Little is known about the molecular machinery that directs secretory vesicles to the site of cell separation during cytokinesis. We show that in Saccharomyces cerevisiae, the class V myosin Myo2p and the Rab/Ypt Sec4p, that are required for vesicle polarization processes at all stages of the cell cycle, form a complex with each other and with a myosin light chain, Mlc1p, that is required for actomyosin ring assembly and cytokinesis. Mlc1p travels on secretory vesicles and forms a complex(es) with Myo2p and/or Sec4p. Its functional interaction with Myo2p is essential during cytokinesis to target secretory vesicles to fill the mother bud neck. The role of Mlc1p in actomyosin ring assembly instead is dispensable for this process. Therefore, in yeast, as recently shown in mammals, class V myosins associate with vesicles via the formation of a complex with Rab/Ypt proteins. Further more, myosin light chains, via their ability to be transported by secretory vesicles and to interact with class V myosin IQ motifs, can regulate vesicle polarization processes at a specific location and stage of the cell cycle.  相似文献   

3.
Myosin V is an actin-based motor essential for a variety of cellular processes including skin pigmentation, cell separation and synaptic transmission. Myosin V transports organelles, vesicles and mRNA by binding, directly or indirectly, to cargo-bound receptors via its C-terminal globular tail domain (GTD). We have used the budding yeast myosin V Myo2p to shed light on the mechanism of how Myo2p interacts with post-Golgi carriers. We show that the Rab/Ypt protein Ypt32p, which associates with membranes of the trans -Golgi network, secretory vesicles and endosomes and is related to the mammalian Rab11, interacts with the Myo2p GTD within a region previously identified as the 'vesicle binding region'. Furthermore, we show that the essential myosin light chain 1 (Mlc1p), required for vesicle delivery at the mother-bud neck during cytokinesis, binds to the Myo2p GTD in a region overlapping that of Ypt32p. Our data are consistent with a role of Ypt32p and Mlc1p in regulating the interaction of post-Golgi carriers with Myo2p subdomain II.  相似文献   

4.
Myosin V motors regulate secretion and cell division in eukaryotes. How MyoV activity is differentially regulated by essential and calmodulin light chain binding remains unclear. We have used NMR spectroscopy to compare the dynamic behavior of Mlc1p, a budding yeast essential light chain, with that of the Xenopus laevis calmodulin. Both proteins have a similar structure and bind similar target proteins but differ in the mechanism by which they interact with the myosin V IQ1. This interaction is essential for MyoV activity. Here, we show that the rigid conformation of the loop connecting the two EF-hand motifs of the Mlc1p N-lobe explains its differential ability to interact with myosin V IQ1. Moreover, we show that the maintenance of the N-lobe structure is required for the essential function of Mlc1p in vivo. These data show that the core characteristics of myosin light chain N-lobes differentiate Mlc1p and calmodulin binding capability.  相似文献   

5.
IQ motifs are widespread in nature. Mlc1p is a calmodulin-like myosin light chain that binds to IQ motifs of a class V myosin, Myo2p, and an IQGAP-related protein, Iqg1p, playing a role in polarized growth and cytokinesis in Saccharomyces cerevisiae. The crystal structures of Mlc1p bound to IQ2 and IQ4 of Myo2p differ dramatically. When bound to IQ2, Mlc1p adopts a compact conformation in which both the N- and C-lobes interact with the IQ motif. However, in the complex with IQ4, the N-lobe no longer interacts with the IQ motif, resulting in an extended conformation of Mlc1p. The two light chain structures relate to two distinct subfamilies of IQ motifs, one of which does not interact with the N-lobes of calmodulin-like light chains. The correlation between light chain structure and IQ sequence is demonstrated further by sedimentation velocity analysis of complexes of Mlc1p with IQ motifs from Myo2p and Iqg1p. The resulting 'free' N-lobes of myosin light chains in the extended conformation could mediate the formation of ternary complexes during protein localization and/or partner recruitment.  相似文献   

6.
Cell polarity involves transport of specific membranes and macromolecules at the right time to the right place. In budding yeast, secretory vesicles are transported by the myosin-V Myo2p to sites of cell growth. We show that phosphatidylinositol 4-phosphate (PI4P) is present in late secretory compartments and is critical for their association with, and transport by, Myo2p. Further, the trans-Golgi network Rab Ypt31/32p and secretory vesicle Rab Sec4p each bind directly, but distinctly, to Myo2p, and these interactions are also required for secretory compartment transport. Enhancing the interaction of Myo2p with PI4P bypasses the requirement for interaction with Ypt31/32p and Sec4p. Together with additional genetic data, the results indicate that Rab proteins and PI4P collaborate in the association of secretory compartments with Myo2p. Thus, we show that a coincidence detection mechanism coordinates inputs from PI4P and the appropriate Rab for secretory compartment transport.  相似文献   

7.
IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition.  相似文献   

8.
Rab GTPases recruit myosin motors to endocytic compartments, which in turn are required for their motility. However, no Ypt/Rab GTPase has been shown to regulate the motility of exocytic compartments. In yeast, the Ypt31/32 functional pair is required for the formation of trans-Golgi vesicles. The myosin V motor Myo2 attaches to these vesicles through its globular-tail domain (GTD) and mediates their polarized delivery to sites of cell growth. Here, we identify Myo2 as an effector of Ypt31/32 and show that the Ypt31/32–Myo2 interaction is required for polarized secretion. Using the yeast-two hybrid system and coprecipitation of recombinant proteins, we show that Ypt31/32 in their guanosine triphosphate (GTP)-bound form interact directly with Myo2-GTD. The physiological relevance of this interaction is shown by colocalization of the proteins, genetic interactions between their genes, and rescue of the lethality caused by a mutation in the Ypt31/32-binding site of Myo2-GTD through fusion with Ypt32. Furthermore, microscopic analyses show a defective Myo2 intracellular localization in ypt31Δ/32ts and in Ypt31/32-interaction–deficient myo2 mutant cells, as well as accumulation of unpolarized secretory vesicles in the latter mutant cells. Together, these results indicate that Ypt31/32 play roles in both the formation of trans-Golgi vesicles and their subsequent Myo2-dependent motility.  相似文献   

9.
Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion.  相似文献   

10.
Cytokinesis in animal cells is accomplished through constriction of an actomyosin ring [1] [2] [3], which must assemble at the correct time and place in order to ensure proper division of genetic material and organelles. Budding yeast is a useful model system for determining the biochemical pathway of contractile ring assembly. The budding yeast IQGAP-like protein, Cyk1/Iqg1p, has multiple roles in the assembly and contraction of the actomyosin ring [4] [5] [6]. Previously, the IQ motifs of Cyk1/Iqg1p were shown to be required for the localization of this protein at the bud neck [6]. We have investigated the binding partner of the IQ motifs, which are predicted to interact with calmodulin-like proteins. Mlc1p was originally identified as a light chain for a type V myosin, Myo2p; however, a cytokinesis defect associated with disruption of the MLC1 gene suggested that the essential function of Mlc1p may involve interactions with other proteins [7]. We show that Mlc1p binds the IQ motifs of Cyk1/Iqg1p and present evidence that this interaction recruits Cyk1/Iqg1p to the bud neck. Immunofluorescence staining shows that Mlc1p is localized to sites of polarized cell growth as well as the bud neck before and independently of Cyk1p. These results demonstrate that Mlc1p is important for the assembly of the actomyosin ring in budding yeast and that this function is mediated through interaction with Cyk1/Iqg1p.  相似文献   

11.
M I Geli  A Wesp    H Riezman 《The EMBO journal》1998,17(3):635-647
The uptake step of receptor-mediated endocytosis in yeast is dependent on the calcium binding protein calmodulin (Cmd1p). In order to understand the role that Cmd1p plays, a search was carried out for possible targets among the genes required for the internalization process. Co-immunoprecipitation, two-hybrid and overlay assays demonstrated that Cmd1p interacts with Myo5p, a type I unconventional myosin. Analysis of the endocytic phenotype and the Cmd1p-Myo5p interaction in thermosensitive cmd1 mutants indicated that the Cmd1p-Myo5p interaction is required for endocytosis in vivo. However, the Cmd1p-Myo5p interaction requirement was partially overcome by deleting the calmodulin binding sites (IQ motifs) from Myo5p, suggesting that these motifs inhibit Myo5p function. Additionally, genetic and biochemical evidence obtained with a collection of cmd1 mutant alleles strongly suggests that Cmd1p plays an additional role in the internalization step of receptor-mediated endocytosis in yeast.  相似文献   

12.
During cell division, organelles are distributed to distinct locations at specific times. For the yeast vacuole, the myosin V motor, Myo2, and its vacuole-specific cargo adaptor, Vac17, regulate where the vacuole is deposited and the timing of vacuole movement. In this paper, we show that Mmr1 functions as a mitochondria-specific cargo adaptor early in the cell cycle and that Mmr1 binds Myo2 at the site that binds Vac17. We demonstrate that Vac17 and Mmr1 compete for binding at this site. Unexpectedly, this competition regulates the volume of vacuoles and mitochondria inherited by the daughter cell. Furthermore, eight of the nine known Myo2 cargo adaptors overlap at one of two sites. Vac17 and Mmr1 overlap at one site, whereas Ypt11 and Kar9 bind subsets of residues that also bind Ypt31/Ypt32, Sec4, and Inp2. These observations predict that competition for access to Myo2 may be a common mechanism to coordinate the inheritance of diverse cargoes.  相似文献   

13.
Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p-Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p-Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes.  相似文献   

14.
Rab GTPases localize to distinct sub-cellular compartments and regulate vesicle trafficking in eukaryotic cells. Yeast Rabs Ypt31/32 and Sec4 have 68% homology and bind to common interactors, yet play distinct roles in the transport of exocytic vesicles. The structures of Ypt31/32 have not previously been reported in the uncomplexed state. We describe the crystal structures of GTP and GDP forms of Ypt32 to understand the molecular basis for Rab function. The structure of Ypt32(GTP) reveals that the switch II conformation is distinct from Sec4(GTP) in spite of a highly conserved amino acid sequence. Also, Ypt32(GDP) reveals a remarkable change in conformation of the switch II helix induced by binding to GDI, which has not been described previously.  相似文献   

15.
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Δ6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Δ6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.  相似文献   

16.
Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling.  相似文献   

17.
Since their identification over 15?years ago, the IQGAP (IQ-motif-containing GTPase-activating protein) family of proteins have been implicated in a wide range of cellular processes, including cytoskeletal reorganization, cell-cell adhesion, cytokinesis and apoptosis. These processes rely on protein-protein interactions, and understanding these (and how they influence one another) is critical in determining how the IQGAPs function. A key group of interactions is with calmodulin and the structurally related proteins myosin essential light chain and S100B. These interactions occur primarily through a series of IQ motifs, which are α-helical segments of the protein located towards the middle of the primary sequence. The three human IQGAP isoforms (IQGAP1, IQGAP2 and IQGAP3) all have four IQ motifs. However, these have different affinities for calmodulin, myosin light chain and S100B. Whereas all four IQ motifs of IQGAP1 interact with calmodulin in the presence of calcium, only the last two do so in the absence of calcium. IQ1 (the first IQ motif) interacts with the myosin essential light chain Mlc1sa and the first two undergo a calcium-dependent interaction with S100B. The significance of the interaction between Mlc1sa and IQGAP1 in mammals is unknown. However, a similar interaction involving the Saccharomyces cerevisiae IQGAP-like protein Iqg1p is involved in cytokinesis, leading to speculation that there may be a similar role in mammals.  相似文献   

18.
Myo2p is an unconventional myosin required for polarized growth in Saccharomyces cerevisiae. Four lines of evidence suggest that (a) Myo2p is a target of calmodulin at sites of cell growth, and (b) the interaction between Myo2p and calmodulin is Ca2+ independent. First, as assessed by indirect immunofluorescence, the distributions of Myo2p and calmodulin are nearly indistinguishable throughout the cell cycle. Second, a genetic analysis indicates that mutations in CMD1 show allele- specific synthetic lethality with the myo2-66 conditional mutation. Mutations that inactivate the Ca(2+)-binding sites of calmodulin have little or no effect on strains carrying myo2-66, whereas an allele with a mutation outside the Ca(2+)-binding sites dramatically increases the severity of the phenotype conferred by myo2-66. Third, Myo2p coimmunoprecipitates with calmodulin in the presence of Ca2+ or EGTA. Finally, we used a modified gel overlay assay to demonstrate direct interaction between calmodulin and fusion proteins containing portions of Myo2p. Calmodulin binds specifically to the region of Myo2p containing six tandem repeats of a motif called an IQ site. Binding occurs in either Ca2+ or EGTA, and only two sites are required to observe binding.  相似文献   

19.
The Rab/Ypt small G proteins are essential for intracellular vesicle trafficking in mammals and yeast. The vesicle-docking process requires that Ypt proteins are located in the vesicle membrane. C-terminal geranylgeranyl anchors mediate the membrane attachment of these proteins. The Rab escort protein (REP) is essential for the recognition of Rab/Ypt small G proteins by geranylgeranyltransferase II (GGTase II) and for their delivery to acceptor membranes. What effect an alteration in the levels of prenylated Rab/Ypt proteins has on vesicle transport or other cellular processes is so far unknown. Here, we report the characterization of a yeast REP mutant, mrs6-2, in which reduced prenylation of Ypt proteins occurs even at the permissive temperature. A shift to the restrictive temperature does not alter exponential growth during the first 3 h. The amount of Sec4p, but not Ypt1p, bound to vesicle membranes is reduced 2.5 h after the shift compared with wild-type or mrs6-2 cells incubated at 25 degrees C. In addition, vesicles fail to be polarized towards the bud and small budded binucleate cells accumulate at this time point. Growth in 1 M sorbitol or overexpression of MLC1, encoding a myosin light chain able to bind the unconventional type V myosin Myo2, or of genes involved in cell wall maintenance, such as SLG1, GFA1 and LRE1, suppresses mrs6-2 thermosensitivity. Our data suggest that, at least at high temperature, a critical minimal level of Ypt protein prenylation is required for maintaining vesicle polarization.  相似文献   

20.
The light chain binding domain of rat myosin 1d consists of two IQ-motifs, both of which bind the light chain calmodulin (CaM). To analyze the Myo1d ATPase activity as a function of the IQ-motifs and Ca2+/CaM binding, we expressed and affinity purified the Myo1d constructs Myo1d-head, Myo1d-IQ1, Myo1d-IQ1.2, Myo1d-IQ2 and Myo1dDeltaLV-IQ2. IQ1 exhibited a high affinity for CaM both in the absence and presence of free Ca2+. IQ2 had a lower affinity for CaM in the absence of Ca2+ than in the presence of Ca2+. The actin-activated ATPase activity of Myo1d was approximately 75% inhibited by Ca2+-binding to CaM. This inhibition was observed irrespective of whether IQ1, IQ2 or both IQ1 and IQ2 were fused to the head. Based on the measured Ca2+-dependence, we propose that Ca2+-binding to the C-terminal pair of high affinity sites in CaM inhibits the Myo1d actin-activated ATPase activity. This inhibition was due to a conformational change of the C-terminal lobe of CaM remaining bound to the IQ-motif(s). Interestingly, a similar but Ca2+-independent inhibition of Myo1d actin-activated ATPase activity was observed when IQ2, fused directly to the Myo1d-head, was rotated through 200 degrees by the deletion of two amino acids in the lever arm alpha-helix N-terminal to the IQ-motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号