首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Chromosome studies were carried out on normal individuals from three generations of one family with a 14p+ chromosome. The short arm of the 14p+ chromosome stained well using Giemsa but poorly using quinacrine or trypsin-Giemsa methods; in each case there was an unstained secondary constriction near the distal end of the short arm. Two Ag bands of average size were present on the 14p+ short arm, indicating that there were two active nucleolus organizer regions; the Ag band near the distal end of the short arm was slightly larger than that near the centromere. Each of the two Ag bands was seen associated with the short arm of one or more of the other acrocentric chromosomes, with a combined frequency of association no greater than that of other chromosomes with an Ag band of the same size. In one individual, hybridization in situ with radioactive 18S and 28S ribosomal RNA showed six times as many autoradiographic silver grains over the short arm of the 14p+ chromosome as over that of any other acrocentric chromosome. The results obtained using in situ labeling indicated that the 14p+ chromosome had a large number of rRNA genes compared with the other acrocentric chromosomes, whereas the results obtained using Ag-staining and association frequency indicated that the 14p+ chromosome had no greater nucleolus organizer activity than did the other acrocentrics. The difference in these findings suggests that not all the rRNA genes on the 14p+ chromosome were active.  相似文献   

2.
3.
4.
5.
Coexistence of inverted Y, chromosome 15p+ and abnormal phenotype.   总被引:3,自引:0,他引:3  
In this study, we report conventional and molecular cytogenetic studies in a patient with multiple anomalies who is a carrier of a pericentric inversion on chromosome Y and a chromosome 15p+. His parents were phenotypically normal. The father is a carrier of a pericentric inversion of chromosome Y, and the mother carries a large chromosome 15p+ variant. The inverted Y chromosome was demonstrated by GTG- and CBG-banding, and DAPI-staining. The presence of extra chromosomal material on the chromosome 15p, that was C-band and DAPI positive, was demonstrated by trypsin G-banding. This suggests that the extra chromosomal material contained repetitive DNA sequences. NOR-staining indicated the presence a nuclear organizer region at the junction of the chromosome 15p+ material. Fluorescence in situ hybridization (FISH), with chromosome X and Y painting probes, alpha- and classic-satellite probes specific for chromosome Y, alpha- and beta-satellite III probes for chromosome 15 were used to elucidate the nature of both the inverted Y chromosome and chromosome 15p+. The result with chromosome X and Y painting probes, alpha-satellite, classic-satellite, and DYS59 probes specific for chromosome Y revealed the rearrangement of the Y chromosome was an inv(Y)(p11.2q11.22 or q11.23). FISH with alpha-satellite and beta-satellite III probes for chromosome 15 demonstrated that the extra chromosomal material on the chromosome 15 probably represents beta-satellite III sequences. The possible roles of the simultaneous occurrence of an inverted Y and the amplified DNA sequence on chromosome 15p in the abnormal phenotype of the proband are discussed.  相似文献   

6.
Intensity heteromorphisms of human chromosome 15p by DA/DAPI technique   总被引:2,自引:2,他引:0  
Summary We suggest that the short arms of human chromosome 15 (15p) exhibit intensity heteromorphisms by DA/DAPI technique. A method for classification of variable intensities is proposed. The different intensities can be classified into at least five classes. They are: negative, pale, medium, intense, and brilliant. Therefore we suggest that 15p is not always positive by DA/DAPI technique. The present findings reveal that the heteromorphism on 15p is far greater than previously thought.  相似文献   

7.
We report the molecular analysis of a 130-kb DNA region containing a junction between beta and non-beta satellite DNA from chromosome 15p. The genomic region is characterized by beta satellite blocks intermingled with variants of the D4Z4 repeat, and duplicons from 4q24 and 4q35. Besides the p-arm of acrocentric chromosomes, the duplicons showed a wide genomespread involving pericentromeric, sub-telomeric, and interstitial regions. In this regard, the paralogous sequences were characterized by a high similarity index (96%), thus indicating a recent transposition during the evolution. The acrocentrics differedwith regard to the location of the 4q24 paralogous region, since it mapped on the p-arm of chromosomes 13-15 and 21, but only on 22q11.2. Conversely, the 4q35 duplication marked the p-arm of all the acrocentrics. In different individuals, the short arm of acrocentric chromosomes revealed a great variability of sequence representation and location at p11 and/or p13 for both the 4q24 and 4q35 duplications. The studied genomic region from chromosome 15p, of which a contig of approximately 200 kb has been derived, could lead to more detailed investigations into the sequence organization and possible biological function of chromosome regions that are located close to the rDNA array.  相似文献   

8.
Cytogenetic analysis in peripheral blood lymphocytes of a 50-year-old female with tongue cancer showed the presence of one to three copies of a small supernumerary marker chromosome (sSMC) in a mosaic state. Family studies also revealed the marker in mosaic form in four (age <29 years) of eleven clinically normal individuals studied from her family of 16 individuals spanning three generations. Due to the extremely small size of the marker chromosome, identification by classical cytogenetics was not informative. Multicolor FISH followed by whole chromosome painting identified the marker as a derivative of chromosome 21. This is the first report of sSMC21 in an adult-onset tongue cancer patient and some of her family members with no clinical symptoms.  相似文献   

9.
Confirmation of chromosome 9p linkage in familial melanoma   总被引:8,自引:3,他引:8       下载免费PDF全文
Malignant melanoma occurs as a familial cancer in 5%–10% of cases where it segregates in a manner consistent with autosomal dominant inheritance. Evidence from cytogenetics, fine-mapping studies of deletions in melanomas, and recent linkage studies supports the location of a human melanoma predisposition gene on the short arm of chromosome 9. We have carried out linkage analysis using the 9p markers IFNA and D9S126 in 26 Australian melanoma kindreds. Multipoint analysis gave a peak lod score of 4.43, 15 cM centromeric to D9S126, although a lod score of 4.13 was also found 15 cM telomeric of IFNA. These data confirm the existence of a melanoma susceptibility gene on 9p and indicate that this locus most probably lies outside of the IFNA–D9S126 interval. No significant heterogeneity was found between families, when either pairwise or multipoint data were analyzed using HOMOG.  相似文献   

10.
The gene for the human p58 protein kinase, a cell division control-related gene, has been mapped by somatic cell hybrid analyses, in situ localization with the chromosomal gene, and nested polymerase chain reaction amplification of microdissected chromosomes. These studies indicate that the expressed p58 chromosomal gene maps to 1p36, while a highly related p58 sequence of unknown nature maps to chromosome 15. Assignment of a p34cdc2-related gene to 1p36 may have implications for numerous tumors that involve deletion of this region, including neuroblastoma, ductal carcinoma of the breast, malignant melanoma, Merkel cell carcinoma, and endocrine neoplasia.  相似文献   

11.
12.
13.
Summary We have characterised by cytogenetic and molecular analysis a de novo tandem duplication of chromosome 21. High resolution chromosome examination of lymphocytes revealed the following karyotype in 90% of the cells: 46,XY,dir dup (21)(pterq22.300::q11.205 qter). Of these cells, 10% showed a normal karyotype. Gene dosage of chromosome 21 sequences by a slot blot method indicated that the duplication extends from D21S16 to D21S55. In situ hybridization with probes close to the borders of the duplicated segment confirmed the gene dosage data and gave results consistent with a true tandem duplication of chromosome 21. Pulsed field gel electrophoresis of the patient's DNA showed an abnormal restriction band common to D21S55 and D21S16, confirming that the junction point between the two homologous parts of the tandem chromosome brings these two sequences into proximity. Restriction fragment length polymorphism analysis indicated that the abnormal chromosome was maternal in origin and that the rearrangement of chromosome 21 could not have occurred at a post-zygotic stage of development but resulted from a recombination event during maternal gametogenesis. The possible mechanisms of formation of the abnormal chromosome are discussed, as is the presence of cells with normal chromosomes 21, in the patient.  相似文献   

14.
A high number of structurally altered marker chromosomes was found in two cases of ovarian carcinoma. Even by the application of different staining methods it was not possible to identify all the chromosomes. No evidence for the existence of a translocation between chromosomes 6 and 14 was found, which seems to be a specific abnormality characteristic of papillary serous cystadenocarcinomas of the ovary. It is of interest that double minutes were present in both cases. This offers further evidence for the assumption that double minutes are not infrequent in carcinomas. Their orthodox mitotic behaviour leads to high karyotype variability (number of double minutes/cell), and may be of particular importance for tumour biology. The methodological and cytogenetic implications of the results are discussed.  相似文献   

15.
Zhu Y  Zhang W  Huo Z  Zhang Y  Xia Y  Li B  Kong X  Hu L 《Human genetics》2007,121(1):113-123
Human isolated gingival fibromatosis is an oral disorder characterized by a slowly progressive benign enlargement of gingival tissues. The most common genetic form, hereditary gingival fibromatosis (HGF), is usually transmitted as an autosomal dominant trait. We report here for the first time a newly identified maternally inherited gingival fibromatosis in two unrelated Chinese families and mapped this disease locus to human chromosome 11p15 with a maximum two point LOD score of 8.70 at D11S4046 (θ = 0) for family 1 and of 6.02 at D11S1318 for family 2. Haplotype analysis placed the critical region in the interval defined by D11S1984 and D11S1338. A cluster of maternally expressed genes is within this critical region. We screened individuals in these two families for mutations for all known maternally expressed genes within this region. None was found either within the coding sequence or at the intron–exon boundary of these genes. Neither did we detect any loss of imprinting in three informative imprinted genes including H19, KCNQ1 downstream neighbor (KCNQ1DN) and cyclin-dependent kinase inhibitor 1C (CDKN1C). However, gene expression profile analysis revealed reduced expression of hemoglobin beta (HBB), hemoglobin delta (HBD), hemoglobin gamma A (HBG1) and hemoglobin gamma G (HBG2) genes at disease locus in HGF patients. This study suggests that genome imprinting might affect the development of HGF. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Conflict Of Interest Statement: No competing financial interests.  相似文献   

16.
We describe the clinical case of a nine-year-old boy with psychomotor retardation and a small supernumerary marker chromosome (sSMC) present in mosaic form. Fluorescence in situ hybridization (FISH) using centromere cross-hybridizing probes D1/5/19Z (pZ5.1), the whole chromosome paint probe 19, pool YACs19p (839B1, 872G3, 728C8), and pool YACs19q (767C4, 761C1, 786G6) demonstrated that the sSMC was derived from chromosome 19p. Based on GTG-banding and FISH analyses, the patient's karyotype was interpreted as: 47,XY,+mar.ish der(19) (:p13.3-->p11:)(839B1+, 872G3+,728C8+, D1/5/19Z+) de novo[52]/46,XY[48]. To our knowledge, only two other similar cases have been reported. This case helps to better delineate karyotype-phenotype correlations between sSMC 19p and associated clinical phenomena.  相似文献   

17.
The Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic diseases that are caused by the loss of function of imprinted genes on the proximal long arm of human chromosome 15. In a few percent of patients with PWS and AS, the disease is due to aberrant imprinting and gene silencing. In patients with PWS and an imprinting defect, the paternal chromosome carries a maternal imprint. In patients with AS and an imprinting defect, the maternal chromosome carries a paternal imprint. Imprinting defects offer a unique opportunity to identify some of the factors and mechanisms involved in imprint erasure, resetting and maintenance. In approximately 10% of cases the imprinting defects are caused by a microdeletion affecting the 5' end of the SNURF-SNRPN locus. These deletions define the 15q imprinting center (IC), which regulates imprinting in the whole domain. These findings have been confirmed and extended in knock-out and transgenic mice. In the majority of patients with an imprinting defect, the incorrect imprint has arisen without a DNA sequence change, possibly as the result of stochastic errors of the imprinting process or the effect of exogenous factors.  相似文献   

18.
The results of morpho-functional and cytogenetic analyses of 341 oocytes unfertilized in the course of extracorporal fertilization programme are presented. The causes of the "failure" during in vitro fertilization of the oocytes are discussed. Relation of the frequency of oocyte chromosome abnormalities (40.2%) on the patient age and cell maturity has been shown.  相似文献   

19.
Familial hypobetalipoproteinemia (FHBL) is an apparently autosomal dominant disorder of lipid metabolism characterized by less than fifth percentile age- and sex-specific levels of apolipoprotein beta (apobeta) and low-density lipoprotein-cholesterol. In a minority of cases, FHBL is due to truncation-producing mutations in the apobeta gene on chromosome 2p23-24. Previously, we reported on a four-generation FHBL kindred in which we had ruled out linkage of the trait to the apobeta gene. To locate other loci containing genes for low apobeta levels in the kindred, a genomewide search was conducted. Regions on 3p21.1-22 with two-point LOD scores >1.5 were identified. Additional markers were typed in the region of these signals. Two-point LOD scores in the region of D3S2407 increased to 3.35 at O = 0. GENEHUNTER confirmed this finding with an nonparametric multipoint LOD score of 7.5 (P=.0004). Additional model-free analyses were conducted with the square root of the apobeta level as the phenotype. Results from the Loki and SOLAR programs further confirmed linkage of FHBL to 3p21.1-22. Weaker linkage to a region near D19S916 was also indicated by Loki and SOLAR. Thus, a heretofore unidentified genetic susceptibility locus for FHBL may reside on chromosome 3.  相似文献   

20.
Koryakov DE  Zhimulev IF  Dimitri P 《Genetics》2002,160(2):509-517
Previous cytological analysis of heterochromatic rearrangements has yielded significant insight into the location and genetic organization of genes mapping to the heterochromatin of chromosomes X, Y, and 2 of Drosophila melanogaster. These studies have greatly facilitated our understanding of the genetic organization of heterochromatic genes. In contrast, the 12 essential genes known to exist within the mitotic heterochromatin of chromosome 3 have remained only imprecisely mapped. As a further step toward establishing a complete map of the heterochomatic genetic functions in Drosophila, we have characterized several rearrangements of chromosome 3 by using banding techniques at the level of mitotic chromosome. Most of the rearrangement breakpoints were located in the dull fluorescent regions h49, h51, and h58, suggesting that these regions correspond to heterochromatic hotspots for rearrangements. We were able to construct a detailed cytogenetic map of chromosome 3 heterochromatin that includes all of the known vital genes. At least 7 genes of the left arm (from l(3)80Fd to l(3)80Fj) map to segment h49-h51, while the most distal genes (from l(3)80Fa to l(3)80Fc) lie within the h47-h49 portion. The two right arm essential genes, l(3)81Fa and l(3)81Fb, are both located within the distal h58 segment. Intriguingly, a major part of chromosome 3 heterochromatin was found to be "empty," in that it did not contain either known genes or known satellite DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号