首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BAR (Bin/Amphiphysin/Rvs) domains and amphipathic α‐helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent‐shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed that membrane curvature sensing critically depends on the N‐terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains emerge as an important means for a protein to sense membrane curvature. Measurements on single liposomes allowed us to document heterogeneous binding behaviour within the ensemble and quantify the influence of liposome polydispersity on bulk membrane curvature sensing experiments. The latter results suggest that bulk liposome‐binding experiments should be interpreted with great caution.  相似文献   

2.
An important new structure suggests the BAR domain is a membrane-binding module that can both produce and sense membrane curvature. BAR resembles a banana that binds membranes electrostatically through its positively charged, concave surface.  相似文献   

3.
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as “molecular information” to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.  相似文献   

4.
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.  相似文献   

5.
The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.  相似文献   

6.
BAR and ENTH domains are families of alpha-helical lipid bilayer binding modules found in proteins that function in endocytosis, actin regulation and signaling. Several members of these families not only bind the bilayer, but also participate in the regulation of its curvature. These properties are thought to play physiological roles at sites of membrane budding and at other sites where narrow tubular membranes occur in vivo. Studies of BAR and ENTH domains and of their flanking regions have provided new insights into mechanisms of membrane deformation and curvature sensing, and have emphasized the importance of amphipathic helices, thought to intercalate in one of the leaflets of the lipid bilayer, in the generation of membrane curvature. Structural studies and database searches are rapidly expanding the BAR and ENTH domains families, with the identification of new related domains and subfamilies, such as F-BAR (also called EFC) domains and ANTH domains, respectively. Here we present a short overview of the properties of these domains based on evidence obtained from genetics, cell biology, biochemistry and structural biology.  相似文献   

7.
BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.  相似文献   

8.
An interdependence between local curvature and domain formation has been observed in both cell and model membranes. An implication of this observation is that domain formation in model membranes may be modulated by membrane curvature. In this paper, small-angle neutron scattering (SANS) is used to examine the influence of membrane curvature (i.e., vesicle size) on the formation of membrane domains. It is found that, although vesicle size and polydispersity are not significantly altered by the formation of membrane domains, the area fraction occupied by domains depends on the overall vesicle size. In particular, increasing membrane curvature (i.e., decreasing vesicle size) results in increased area fractions of membrane domains.  相似文献   

9.
The crescent-shaped BAR (Bin/Amphiphysin/Rvs-homology) domain dimer is a versatile protein module that senses and generates positive membrane curvature. The BAR domain dimer of human endophilin-A1, solved at 3.1 A, has a unique structure consisting of a pair of helix-loop appendages sprouting out from the crescent. The appendage's short helices form a hydrophobic ridge, which runs across the concave surface at its center. Examining liposome binding and tubulation in vitro using purified BAR domain and its mutants indicated that the ridge penetrates into the membrane bilayer and enhances liposome tubulation. BAR domain-expressing cells exhibited marked plasma membrane tubulation in vivo. Furthermore, a swinging-arm mutant lost liposome tubulation activity yet retaining liposome binding. These data suggested that the rigid crescent dimer shape is crucial for the tubulation. We here propose that the BAR domain drives membrane curvature by coordinate action of the crescent's scaffold mechanism and the ridge's membrane insertion in addition to membrane binding via amino-terminal amphipathic helix.  相似文献   

10.
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

11.
In this review we describe the state-of-the-art of computer simulation studies of lipid membranes. We focus on collective lipid-lipid and lipid-protein interactions that trigger deformations of the natural lamellar membrane state, showing that many important biological processes including self-aggregation of membrane components into domains, the formation of non-lamellar phases, and membrane poration and curving, are now amenable to detailed simulation studies.  相似文献   

12.
13.
14.
Epsin was originally discovered by virtue of its binding to another accessory protein, Eps15. Members of the epsin family play an important role as accessory proteins in clathrin-mediated endocytosis. Epsin isoforms have been described that differ in intracellular site of action and/or in tissue distribution, although all epsins essentially contribute to membrane deformation. Besides inducing membrane curvature, epsin also plays a key function as adaptor protein, coupling various components of the clathrin-assisted uptake and fulfils an important role in selecting and recognizing cargo. Furthermore, epsin possesses the ability to block vesicle formation during mitosis. To perform all these functions, epsin, apart from interacting with PtdIns(4,5)P2 via its ENTH domain, also engages in several protein interactions with different components of the clathrin-mediated endocytic system. Recently, RNA interference has successfully been exploited to generate a cell line constitutively silencing epsin expression, which can be used to study internalization of multiple ligands.  相似文献   

15.
Membrane dynamics is an essential process for cell locomotion, cytokinesis, vesicular transport and organelle morphogenesis. Formation of tubes or buds from a nearly flat membrane is a widely spread feature of the membrane shape changes. The BAR (Bin/Amphiphysin/Rvs-homology) domain dimers exhibit long extended curved shapes and appear to be outstandingly suitable modules for this purpose. So far, crystal structures of 18 independent BAR domains including inverse-BAR domains and FCH-BAR domains have been reported. These atomic models show a vast variation of dimer shapes on a common and simple basic framework. Comparison of the structural variations with respect to differences in membrane sculpting properties provide useful clues about the mechanisms for modifying the framework into a particular dimer that generates and/or senses a distinct curvature set of the membrane.  相似文献   

16.
17.
N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain.  相似文献   

18.
19.
20.
An intimate interplay of the plasma membrane with curvature-sensing and curvature-inducing proteins would allow for defining specific sites or nanodomains of action at the plasma membrane, for example, for protrusion, invagination, and polarization. In addition, such connections are predestined to ensure spatial and temporal order and sequences. The combined forces of membrane shapers and the cortical actin cytoskeleton might hereby in particular be required to overcome the strong resistance against membrane rearrangements in case of high plasma membrane tension or cellular turgor. Interestingly, also the opposite might be necessary, the inhibition of both membrane shapers and cytoskeletal reinforcement structures to relieve membrane tension to protect cells from membrane damage and rupturing during mechanical stress. In this review article, we discuss recent conceptual advances enlightening the interplay of plasma membrane curvature and the cortical actin cytoskeleton during endocytosis, modulations of membrane tensions, and the shaping of entire cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号