首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.  相似文献   

2.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

3.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

4.
EcoP15I DNA methyltransferase catalyzes the transfer of the methyl group of S-adenosyl-l-methionine to the N6 position of the second adenine within the double-stranded DNA sequence 5'-CAGCAG-3'. To achieve catalysis, the enzyme requires a magnesium ion. Binding of magnesium to the enzyme induces significant conformational changes as monitored by circular dichroism spectroscopy. EcoP15I DNA methyltransferase was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at pH 8.0. The inactivated enzyme was cleaved into two fragments with molecular masses of 36 and 35 kDa. Using this affinity cleavage assay, we have located the magnesium binding-like motif to amino acids 355-377 of EcoP15I DNA methyltransferase. Sequence homology comparisons between EcoP15I DNA methyltransferase and other restriction endonucleases allowed us to identify a PD(X)n(D/E)XK-like sequence as the putative magnesium ion binding site. Point mutations generated in this region were analyzed for their role in methyltransferase activity, metal coordination, and substrate binding. Although the mutant methyltransferases bind DNA and S-adenosyl-l-methionine as well as the wild-type enzyme does, they are inactive primarily because of their inability to flip the target base. Collectively, these data are consistent with the fact that acidic amino acid residues of the region 355-377 in EcoP15I DNA methyltransferase are important for the critical positioning of magnesium ions for catalysis. This is the first example of metal-dependent function of a DNA methyltransferase. These findings provide impetus for exploring the role(s) of metal ions in the structure and function of DNA methyltransferases.  相似文献   

5.
Most ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases) are inhibited by the histidine reagent diethyl pyrocarbonate (DEPC), while being resistant to inhibition by many other chemical modification agents. We used site-directed mutagenesis to investigate the sites of modification responsible for DEPC inhibition. First, we constructed the mutations H135A and R67H in eNTPDase-3 to address the possibility that, in eNTPDase-3, histidine 135 compensates for the lack of a histidine in apyrase conserved region (ACR) 1, present in all other membranous eNTPDases (but replaced by R67 in ACR1 of eNTPDase-3). We found histidine 135 is a major, but not the sole, target for DEPC-induced inhibition in eNTPDase-3. In addition, analysis of the R67H mutant led us to conclude that this site is important for DEPC inactivation of other eNTPDases. We also mutated singly and collectively three of the most conserved histidine residues present in eNTPDase-3 (129, 257 and 447) to alanine. None of the single, conserved histidine mutations nor the triple histidine mutation inactivated the enzyme or decreased susceptibility to DEPC inhibition. However, changes in the tendency of monomers to self-associate were noted, and the triple histidine mutant exhibited a higher nucleotidase specific activity than the wild-type.  相似文献   

6.
Diethyl pyrocarbonate (DEPC) in conditions that favour carbethoxylation of histidyl residues strongly inactivated E-type ATPase activity of a rat lung membrane preparation, as well as ecto-ATPase activity of rat vessels and human Epstein-Barr virus-transformed B lymphocytes. Inactivation of the enzyme (up to 70%) achieved at concentrations of DEPC below 0.5 mM could be fully reversed by 200 mM hydroxylamine at pH 7.5, thus confirming histidine-selective modification. UTP effectively protected the enzyme activity from DEPC inactivation. This was taken to indicate that the conformation adopted by the enzyme molecule upon substrate binding was not compatible with DEPC reaching and/or modifying the relevant histidyl residue. Substrate activation curves were interpreted to show the enzyme molecule to be inactive, at all substrate concentrations tested, when the target histidyl residue had been modified by DEPC. Comparison of known sequences of CD39-like ecto-ATP(D)ases with the results on inactivation by DEPC revealed His-59 and His-251 (according to the human CD39 sequence) as equally possible targets of the inactivating DEPC modification. Potato apyrase lacks a homologue for the former residue, while the latter is preserved in the enzyme sequence. Therefore, this enzyme was exposed to DEPC, and since hydrolysis of ATP and ADP by potato apyrase was insensitive to modification with DEPC, it was concluded that His-59 is the essential residue in CD39 that is affected by DEPC modification in a way that causes inactivation of the enzyme.  相似文献   

7.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

8.
DNA cleavage by type III restriction endonucleases requires two inversely oriented asymmetric recognition sequences and results from ATP-dependent DNA translocation and collision of two enzyme molecules. Here, we characterized the structure and mode of action of the related EcoP1I and EcoP15I enzymes. Analytical ultracentrifugation and gel quantification revealed a common Res(2)Mod(2) subunit stoichiometry. Single alanine substitutions in the putative nuclease active site of ResP1 and ResP15 abolished DNA but not ATP hydrolysis, whilst a substitution in helicase motif VI abolished both activities. Positively supercoiled DNA substrates containing a pair of inversely oriented recognition sites were cleaved inefficiently, whereas the corresponding relaxed and negatively supercoiled substrates were cleaved efficiently, suggesting that DNA overtwisting impedes the convergence of the translocating enzymes. EcoP1I and EcoP15I could co-operate in DNA cleavage on circular substrate containing several EcoP1I sites inversely oriented to a single EcoP15I site; cleavage occurred predominantly at the EcoP15I site. EcoP15I alone showed nicking activity on these molecules, cutting exclusively the top DNA strand at its recognition site. This activity was dependent on enzyme concentration and local DNA sequence. The EcoP1I nuclease mutant greatly stimulated the EcoP15I nicking activity, while the EcoP1I motif VI mutant did not. Moreover, combining an EcoP15I nuclease mutant with wild-type EcoP1I resulted in cutting the bottom DNA strand at the EcoP15I site. These data suggest that double-strand breaks result from top strand cleavage by a Res subunit proximal to the site of cleavage, whilst bottom strand cleavage is catalysed by a Res subunit supplied in trans by the distal endonuclease in the collision complex.  相似文献   

9.
HlyC is an internal protein acyltransferase that activates hemolysin, a toxic protein produced by pathogenic Escherichia coli. Acyl-acyl carrier protein (ACP) is the essential acyl donor. Separately subcloned, expressed, and purified prohemolysin A (proHlyA), HlyC, and [1-14C]myristoyl-ACP have been used to study the conversion of proHlyA to HlyA [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. HlyC and hemolysin belong to a family of at least 13 toxins produced by Gram-negative bacteria. The homologous acyltransferases of the family show a number of conserved residues that are possible candidates for participation in acyl transfer. Specific chemical reagents and site-directed mutagenesis showed that neither the single conserved cysteine nor the three conserved serine residues were required for enzyme activity. Treatment with the reversible histidine-modifying diethyl pyrocarbonate (DEPC) inhibited acyltransferase activity, and acyltransferase activity was restored following hydroxylamine treatment. The substrate myristoyl-ACP protected HlyC from DEPC inhibition. These findings and spectral absorbance changes suggested that histidine, particularly a histidine proximal to the substrate binding site, was essential for enzyme activity. Site-directed mutageneses of the single conserved histidine residue, His23, to alanine, cysteine, or serine resulted in each instance in complete inactivation of the enzyme.  相似文献   

10.
X Zhang  A L Tsai  R J Kulmacz 《Biochemistry》1992,31(9):2528-2538
The role of histidine in catalysis by prostaglandin H synthase has been investigated using chemical modification with diethyl pyrocarbonate (DEPC), an agent that has been found to rather selectively derivatize histidine residues in proteins under mild conditions. Incubation of the synthase apoprotein with DEPC at pH 7.2 resulted in a progressive loss of the capacity for both cyclooxygenase and peroxidase catalytic activities. The kinetics of inactivation of the cyclooxygenase activity were dependent on the concentration of DEPC; a second-order rate constant of 680 M-1 min-1 was estimated for reaction of the apoenzyme at pH 7.2 and 0 degrees C. The kinetics of inactivation of the cyclooxygenase by DEPC exhibited a sigmoidal dependence on the pH, indicating that deprotonation of a group with a pKa of 6.3 was required for inactivation. The presence of the heme prosthetic group slowed, but did not prevent, inactivation by DEPC. The stoichiometry of histidine modification of apoenzyme during inactivation determined from absorbance increases at 242 nm agreed well with the overall stoichiometry of derivatized residues determined with [14C]DEPC, indicating that modification by DEPC was quite selective for histidine residues on the synthase. Although modification of several histidine residues by DEPC was observed, only one of the histidine residues was essential for cyclooxygenase activity. Modification of the holoenzyme with DEPC altered the EPR signal of the hydroperoxide-induced tyrosyl free radical from the wide doublet (35 G, peak-to-trough) found with the native synthase to a narrower singlet (28 G, peak-to-trough) quite like that found in the indomethacin-synthase complex. Reaction of the indomethacin-synthase complex with DEPC was found to increase the cyclooxygenase velocity by 9 times its initial value, to about one-third of the uninhibited value, without displacement of the indomethacin; the peroxidase was significantly inactivated under the same conditions. Histidyl residues in the synthase are thus likely to have important roles not only in cyclooxygenase and peroxidase catalysis but also in the interaction of the synthase with indomethacin.  相似文献   

11.
The sequence similarity with bacterial neutral sphingomyelinase resulted in the isolation of putative mammalian counterparts and, subsequently, identification of similar molecules in a number of other eukaryotic organisms. Based on sequence similarities and previous characterization of the mammalian enzymes, we have chemically modified specific residues and performed site-directed mutagenesis in order to identify critical catalytic residues and determinants for membrane localization. Modification of histidine residues and the substrate protection experiments demonstrated the presence of reactive histidine residues within the active site. Site directed mutagenesis suggested an essential role in catalysis for two histidine residues (His-136 and His-272), which are conserved in all sequences. Mutations of two additional histidines (His-138 and His-151), conserved only in eukaryotes, resulted in reduced neutral sphingomyelinase activity. In addition to sphingomyelin, the enzyme also hydrolyzed lysophosphatidylcholine. Exposure to an oxidizing environment or modification of cysteine residues using several specific compounds also inactivated the enzyme. Site-directed mutagenesis of eight cysteine residues and gel-shift analysis demonstrated that these residues did not participate in the catalytic reaction and suggested the involvement of cysteines in the formation/breakage of disulfide bonds, which could underlie the reversible inactivation by the oxidizing compounds. Cellular localization studies of a series of deletion mutants, expressed as green fluorescent protein fusion proteins, demonstrated that the transmembrane region contains determinants for the endoplasmic reticulum localization.  相似文献   

12.
The histidine-selective reagents diethylpyrocarbonate (DEPC) and dimethylpyrocarbonate were used to study active site residues of phosphoenolpyruvate carboxykinase. Both reagents show pseudo first-order inhibition of enzyme activity at 22 +/- 1 degree C with calculated second-order rate constants of 2.8 and 4.6 M-1 s-1, respectively. The inhibition appears partially reversible. Substrates affect the rate of inhibition: KHCO3 enhances the rate, Mn2+ has little effect, and phosphoenolpyruvate decreases the rate. The best protection is obtained by IDP or IDP and Mn2+. The kinetic studies show that modification of histidine is specific and leads to loss of enzymatic activity. Two histidines per enzyme are modified by DEPC, as measured by an absorption change at 240 nm, in the absence of substrate, leading to loss in activity. One histidine per molecule is modified in the presence of KHCO3, giving inactivation. Cysteine and lysine residues are not affected. A study of the inhibition rate constant as a function of pH gives a pKa of 6.7. Enzyme modified by DEPC in the absence of substrate (1% remaining activity) shows no binding of ITP or of phosphoenolpyruvate to the enzyme.Mn2+ complex as studied by proton relaxation rates. When enzyme is modified in the presence of KHCO3 (44% remaining activity), ITP and KHCO3 bind to the enzyme.Mn2+ complex similarly to the binding to native enzyme. Phosphoenolpyruvate binding to modified enzyme.Mn results in an enhancement of proton relaxation rates rather than the decrease observed with native enzyme.Mn. The CD spectra of histidine-modified enzyme show a decrease in alpha-helical and random structure with an increase in anti-parallel beta-sheet structure compared to native enzyme. These results show that avian phosphoenolpyruvate carboxykinase has 2 histidine residues which are reactive with DEPC and dimethylpyrocarbonate, and one of the 15 histidine residues in the protein is at or near the phosphoenolpyruvate binding site and is involved in catalysis.  相似文献   

13.
The role of histidine in the catalytic mechanism of acetate kinase from Methanosarcina thermophila was investigated by diethylpyrocarbonate inactivation and site-directed mutagenesis. Inactivation was accompanied by an increase in absorbance at 240 nm with no change in absorbance at 280 nm, and treatment of the inactivated enzyme with hydroxylamine restored 95% activity, results that indicated diethylpyrocarbonate inactivates the enzyme by the specific modification of histidine. The substrates ATP, ADP, acetate, and acetyl phosphate protected against inactivation suggesting at least one active site where histidine is modified. Correlation of residual activity with the number of histidines modified, as determined by absorbance at 240 nm, indicated that a maximum of three histidines are modified per subunit, two of which are essential for full inactivation. Comparison of the M. thermophila acetate kinase sequence with 56 putative acetate kinase sequences revealed eight highly conserved histidines, three of which (His-123, His-180, and His-208) are perfectly conserved. Diethylpyrocarbonate inactivation of the eight histidine --> alanine variants indicated that His-180 and His-123 are in the active site and that the modification of both is necessary for full inactivation. Kinetic analyses of the eight variants showed that no other histidines are important for activity. Analysis of additional His-180 variants indicated that phosphorylation of His-180 is not essential for catalysis. Possible functions of His-180 are discussed.  相似文献   

14.
The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAH 7-P) synthase (Phe) is inactivated by diethyl pyrocarbonate (DEPC). The inactivation is first order with respect to enzyme and DEPC concentrations with a pseudo-second order rate constant of inactivation by DEPC of 4.9 +/- 0.8 m(-1) s(-1) at pH 6.8 and 4 degrees C. The dependence of inactivation on pH and the spectral features of enzyme modified at specific pH values imply that both histidine and cysteine residues are modified, which is confirmed by site-directed mutagenesis. Analysis of the chemical modification data indicates that one histidine is essential for activity. DAH 7-P synthase (Phe) is protected against DEPC inactivation by phosphoenolpyruvate, whereas d-erythrose 4-phosphate offers only minimal protection. The conserved residues H-172, H-207, H-268, and H-304 were individually mutated to glycine. The H304G and H207G mutants retain some level of activity, whereas the H268G and H172G mutants are virtually inactive. A comparison of the circular dichroism spectra of wild-type enzyme and the various mutants demonstrates that H-172 may play a structural role. Comparison of the UV spectra of the H268G and wild-type enzymes saturated with Cu(2+) indicates that the metal-binding site of the H268G mutant resembles that of the wild-type enzyme. The residue H-268 may play a catalytic role based on the site-directed mutagenesis and spectroscopic studies. Cysteine 61 appears to influence the pK(a) of H-268 in the wild-type enzyme. The pK(a) of H-268 increases from 6.0 to 7.0 following mutation of C-61 to glycine.  相似文献   

15.
The ArsA ATPase is the catalytic subunit of the ArsAB oxyanion pump in Escherichia coli that is responsible for extruding arsenite or antimonite from inside the cell, thereby conferring resistance. Either antimonite or arsenite stimulates ArsA ATPase activity. In this study, the role of histidine residues in ArsA activity was investigated. Treatment of ArsA with diethyl pyrocarbonate (DEPC) resulted in complete loss of catalytic activity. The inactivation could be reversed upon subsequent incubation with hydroxylamine, suggesting specific modification of histidine residues. ATP and oxyanions afforded significant protection against DEPC inactivation, indicating that the histidines are located at the active site. ArsA has 13 histidine residues located at position 138, 148, 219, 327, 359, 368, 388, 397, 453, 465, 477, 520, and 558. Each histidine was individually altered to alanine by site-directed mutagenesis. Cells expressing the altered ArsA proteins were resistant to both arsenite and antimonite. The results indicate that no single histidine residue plays a direct role in catalysis, and the inhibition by DEPC may be caused by steric hindrance from the carbethoxy group.  相似文献   

16.
D N Rao  H Eberle    T A Bickle 《Journal of bacteriology》1989,171(5):2347-2352
This study characterized several mutations of the bacteriophage P1 mod gene. This gene codes for the subunit of the EcoP1 restriction enzyme that is responsible for DNA sequence recognition and for modification methylation. We cloned the mutant mod genes into expression vectors and purified the mutant proteins to near homogeneity. Two of the mutant mod genes studied were the c2 clear-plaque mutants described by Scott (Virology 41:66-71, 1970). These mutant proteins can recognize EcoP1 sites in DNA and direct restriction but are unable to modify DNA. Methylation assays as well as S-adenosylmethionine (SAM) binding studies showed that the c2 mutants are methylation deficient because they do not bind SAM, and we conclude that the mutations destroy the SAM-binding site. Both of the c2 mutations lie within a region of the EcoP1 mod gene that is not conserved when compared with the mod gene of the related EcoP15 system. EcoP15 and EcoP1 recognize different DNA sequences, and we believe that this region of the protein may code for the DNA-binding site of the enzyme. The other mutants characterized were made by site-directed mutagenesis at codon 240. Evidence is presented that one of them, Ser-240----Pro, simultaneously lost the capacity to bind SAM and may also have changed its DNA sequence specificity.  相似文献   

17.
A closer inspection of the amino acid sequence of EcoP15I DNA methyltransferase revealed a region of similarity to the PDXn(D/E)XK catalytic site of type II restriction endonucleases, except for methionine in EcoP15I DNA methyltransferase instead of proline. Substitution of methionine at position 357 by proline converts EcoP15I DNA methyltransferase to a site-specific endonuclease. EcoP15I-M357P DNA methyltransferase specifically binds to the recognition sequence 5'-CAGCAG-3' and cleaves DNA asymmetrically EcoP151-M357P.DNA methyltransferase specifically binds to the recognition sequence 5'-CAGCAG-3' and cleaves DNA asymmetrically, 5'-CAGCAG(N)(10)-3', as indicated by the arrows, in presence of magnesium ions.  相似文献   

18.
The shikimate pathway enzyme 3-dehydroquinase is very susceptible to inactivation by the group-specific reagent diethyl pyrocarbonate (DEP). Inactivation follows pseudo first-order kinetics and exhibits a second-order rate constant of 148.5 M-1 min-1. An equilibrium mixture of substrate and product substantially protects against inactivation by DEP, suggesting that residues within the active site are being modified. Complete inactivation of the enzyme correlates with the modification of 6 histidine residues/subunit as determined by difference spectroscopy at 240 nm. Enzymic activity can be restored by hydroxylamine treatment, which is also consistent with the modification occurring at histidine residues. Using the kinetic method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558), it was shown that modification of a single histidine residue leads to inactivation. Ligand protection experiments also indicated that 1 histidine residue was protected from DEP modification. pH studies show that the pKa for this inactivation is 6.18, which is identical to the single pKa determined from the pH/log Vmax profile for the enzyme. A single active site peptide was identified by differential peptide mapping in the presence and absence of ligand. This peptide was found to comprise residues 141-158; of the 2 histidines in this peptide (His-143 and His-146), only one, His-143, is conserved among all type I dehydroquinases. We propose that His-143 is the active site histidine responsible for DEP-mediated inactivation of dehydroquinase and is a good candidate for the general base that has been postulated to participate in the mechanism of this enzyme.  相似文献   

19.
The Type III restriction endonuclease EcoP15I forms a hetero-oligomeric enzyme complex that consists of two modification (Mod) subunits and two restriction (Res) subunits. Structural data on Type III restriction enzymes in general are lacking because of their remarkable size of more than 400 kDa and the laborious and low-yield protein purification procedures. We took advantage of the EcoP15I-overexpressing vector pQEP15 and affinity chromatography to generate a quantity of EcoP15I high enough for comprehensive proteolytic digestion studies and analyses of the proteolytic fragments by mass spectrometry. We show here that in the presence of specific DNA the entire Mod subunit is protected from trypsin digestion, whereas in the absence of DNA stable protein domains of the Mod subunit were not detected. In contrast, the Res subunit is comprised of two trypsin-resistant domains of approximately 77-79 kDa and 27-29 kDa, respectively. The cofactor ATP and the presence of DNA, either specific or unspecific, are important stabilizers of the Res subunit. The large N-terminal domain of Res contains numerous functional motifs that are predicted to be involved in ATP-binding and hydrolysis and/or DNA translocation. The C-terminal small domain harbours the catalytic center. Based on our data, we conclude that both structural Res domains are connected by a flexible linker region that spans 23 amino acid residues. To confirm this conclusion, we have investigated several EcoP15I enzyme mutants obtained by insertion mutagenesis in and around the predicted linker region within the Res subunit. All mutants tolerated the genetic manipulation and did not display loss of function or alteration of the DNA cleavage position.  相似文献   

20.
Horseradish peroxidase (HRP), when incubated with diethylpyrocarbonate (DEPC), shows a time-dependent loss of iodide oxidation activity. The inactivation follows pseudo-first order kinetics with a second order rate constant of 0.43 min-1 M-1 at 30 degrees C and is reversed by neutralized hydroxylamine. The difference absorption spectrum of the modified versus native enzyme shows a peak at 244 nm, characteristic of N-carbethoxyhistidine, which is diminished by treatment with hydroxylamine. Correlation between the stoichiometry of histidine modification and the extent of inactivation indicates that out of 2 histidine residues modified, one is responsible for inactivation. A plot of the log of the reciprocal half-time of inactivation against log DEPC concentration further suggests that only 1 histidine is involved in catalysis. The rate of inactivation shows a pH dependence with an inflection point at 6.2, indicating histidine derivatization by DEPC. Inactivation due to modification of tyrosine, lysine, or cysteine has been excluded. CD studies reveal no significant change in the protein or heme conformation following DEPC modification. We suggest that a unique histidine residue is required for maximal catalytic activity of HRP for iodide oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号