首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unusually high SOC levels have been reported for sandy cropland soils in North-Western Europe. A potential link with their general heathland land-use history was investigated by comparing two soil pairs of relict heathland and cultivated former heathland in the Belgian sandy region. A sequential chemical fractionation yielded similar sizes in corresponding SOM fractions between the heathland and cropland soils (i.e. NaOCl resistant: 12.3–15.0 g C kg−1 and NaOCl + HF resistant: 2.6–5.3 g C kg−1). Higher amounts of clay sized N in the cropland plots can be attributed to N additions from mineral fertilizers and animal manure. Temperature resolved Pyrolysis Field Ionization Mass Spectroscopy analysis showed that the composition of both relict heathland and cultivated soils was surprisingly similar, in spite of over 60 years of intense cropland management. The mass spectra of SOM in both heathland-cropland soil pairs investigated was dominated by signals from lipids, alkylaromatics and sterols. The accumulation of this SOM rich in aliphatics was logically linked to the high input of lipids, long-chain aliphatics and sterols from heathland vegetation and the low soil pH and microbial activity. Based on the relatively high OC surface loadings of HF-extractable OM (13–44 mg C m−2 Fe and 1.2–2.3 mg C m−2 clay), direct organo-mineral bonds between OM and Fe-oxides or clay minerals seem to be only partly involved as a stabilization mechanism in these soils. The distinct bimodal shape of the thermograms indicates that OM-crosslinking could furthermore contribute substantially to SOM stabilization in these soils. This study therefore corroborates the previously proposed view that lipids may be bound in networks of alkylaromatics, the structural building blocks of OM macromolecules. We hypothesize that such binding is able to explain the measured retention of these OM components, even under several decades of cropland management.  相似文献   

2.
Physical separation of soil into different soil organic matter (SOM) fractions is widely used to identify organic carbon pools that are differently stabilized and have distinct chemical composition. However, the mechanisms underlying these differences in stability and chemical composition are only partly understood. To provide new insights into the stabilization of different chemical compound classes in physically-separated SOM fractions, we assessed shifts in the biomolecular composition of bulk soils and individual particle size fractions that were incubated in the laboratory for 345 days. After the incubation, also the incubated bulk soil was fractionated. The chemical composition of organic matter in bulk soils and fractions was characterized by 13C-CPMAS nuclear magnetic resonance spectroscopy and sequential chemical extraction followed by GC/MS measurements. Plant-derived lipids and lignin were abundant in particulate organic matter (POM) fractions of sand-, silt-, and clay-size and the mineral-bound, clay-sized organic matter. These results indicate that recent conceptualizations of SOM stabilization probably understate the contribution of plant-derived organic matter to stable SOM pools. Although our data indicate that inherent recalcitrance could be important in soils with limited aggregation, organo-mineral interactions and aggregation were responsible for long-term SOM stabilization. In particular, we observed consistently higher concentrations of plant-derived lipids in POM fractions that were incubated individually, where aggregates were disrupted, as compared to those incubated as bulk soil, where aggregates stayed intact. This finding emphasizes the importance of aggregation for the stabilization of less ‘recalcitrant’ biomolecules in the POM fractions. Because also the abundance of lipids and lignin in clay-sized, mineral-associated SOM was substantially influenced by aggregation, the bioavailability of mineral-associated SOM likely increases after the destruction of intact soil structures.  相似文献   

3.
The projected increase in global mean temperature could accelerate the turnover of soil organic matter (SOM). Enhanced soil CO2 emissions could feedback on the climate system, depending on the balance between the sensitivity to temperature of net carbon fixation by vegetation and SOM decomposition. Most of the SOM is stabilised by several physico-chemical mechanisms within the soil architecture, but the response of this quantitatively important fraction to increasing temperature is largely unknown. The aim of this study was to relate the temperature sensitivity of decomposition of physical and chemical soil fractions (size fractions, hydrolysis residues), and of bulk soil, to their quality and turnover time. Soil samples were taken from arable and grassland soils from the Swiss Central Plateau, and CO2 production was measured under strictly controlled conditions at 5, 15, 25, and 35 °C by using sequential incubation. Physico-chemical properties of the samples were characterised by measuring elemental composition, surface area, 14C age, and by using DRIFT spectroscopy. CO2 production rates per unit (g) organic carbon (OC) strongly varied between samples, in relation to the difference in the biochemical quality of the substrates. The temperature response of all samples was exponential up to 25 °C, with the largest variability at lower temperatures. Q10 values were negatively related to CO2 production over the whole temperature range, indicating higher temperature sensitivity of SOM of lower quality. In particular, hydrolysis residues, representing a more stabilised SOM pool containing older C, produced less CO2 g−1 OC than non-hydrolysed fractions or bulk samples at lower temperatures, but similar rates at ≥25 °C, leading to higher Q10 values than in other samples. Based on these results and provided that they apply also to other soils it is suggested that because of the higher sensitivity of passive SOM the overall response of SOM to increasing temperatures might be higher than previously expected from SOM models. Finally, surface area measurements revealed that micro-aggregation rather than organo-mineral association mainly contributes to the longer turnover time of SOM isolated by acid hydrolysis.  相似文献   

4.
Solid surface fluorescence excitation-emission matrix (EEM) is developed a potential method to characterize soil organic matter (SOM). Solid surface EEM spectroscopy with parallel factor analysis (PARAFAC) and hierarchical cluster analysis (HCA) is used to extract fluorescent components, to seek latent factors, and to investigate spatial distribution of SOM. Soil samples were collected from four native halophyte and two furrow-irrigated soil profiles, i.e. Comm. Salicornia europaea (CSE), Comm. Suaeda glauca (CSG), Comm. Kalidium cuspidatum (CKC), Comm. Sophora alopecuroides (CSA), corn fields (CFD), and wheat fields (WFD). SOM contained six fluorescent components: microbial/terrestrial fulvic-like fluorescent components (C1), tryptophan-like/lignin-derived phenol fluorescent components (C2), terrestrial humic-like fluorescent component (C3), lignin oxidative degradation by-products (C4 and C5), and amino acids (C6). The C 4 and C5 were the representative components of SOM within the CSE, CSG, CKC, CSA and CFD soil profiles, while the C2 and C6 were dominated within the WFD soil profile. The C4, C5, C1 and C2 were latent factors, and they could roughly distinguish SOM within the whole saline soil profiles except the CFD. A humification index (H/L) deduced from the fluorescent components, was very suitable to indicate humification levels of SOM. Humification levels of SOM within the halophyte soil profiles decreased with soil depth, but the opposite trends within the furrow-irrigated soil profiles. The H/L was closely correlated with exchangeable sodium percentage (ESP), and humification levels increased with the decreasing ESP. Soil surface EEM may not only indicate organic matter fractions of saline soils, but may be transferred to other types of landscape.  相似文献   

5.
The determination of optical properties of organic matter using spectroscopic techniques is a powerful tool for the characterization of humic substances (HS) in soils and sediments because of sensitivity, specificity and sample throughput. However, basic spectroscopic techniques have practical limitations because of the similarity in the optical properties of many HS. To improve resolution, the combination of excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) was applied for characterizing fulvic acid (FA) and humic acid (HA) fractions from soils and sediments of two estuarine environments in Spain. Five fluorescent components were identified by EEM-PARAFAC and were found in both FA and HA fractions, consistent with the new paradigm of HS as supramolecular associations as well as the ubiquity of the HS components in the environment. Their contribution was, however, different between the FA and HA fractions. Two different, humic-like, fluorescent components were representative of FA and HA fractions, respectively. The spectral characteristics of these components were similar to previously reported PARAFAC components in dissolved organic matter (DOM) in a wide range of environments, suggesting their applicability in assessing OM quality and environmental dynamics. A microbial humic-like component was much more abundant in FA than in HA fractions. Furthermore, principal component analysis clarified that the two identified protein-like components, were enriched in sediment HA compared to soil HA, suggesting a larger contribution of refractory algaenan in sediment HA. The results of the present study demonstrate that EEM-PARAFAC is a useful technique for the biogeochemical characterization of soil and sedimentary HS.  相似文献   

6.
In Africa, the direct use of wetlands has long contributed to livelihoods, but use may lead to the degradation of wetlands. In order to better understand how the biophysical features of a wetland influence the sustainability of its use, an investigation was undertaken of the ecological condition and use of three wetlands in the Kasungu District, Malawi, where human pressures on wetlands are high. The first wetland, at the head of the catchment, had sandy soils and a gentle longitudinal slope, the second wetland, lower in the catchment, had clay soils and a steeper longitudinal slope, and the third wetland was intermediate. A framework was applied to score five functional components of ecological condition: hydrology, geomorphology, soil organic matter (SOM) accumulation, nutrient cycling and vegetation composition in terms of human impact, based on pre-defined field indicators. The framework highlighted particular vulnerabilities of individual wetlands in the face of human pressure. Vulnerability varied greatly across the wetlands in terms of: recovery of native vegetation composition following cultivation, geomorphic change through gully erosion and depletion of SOM. The framework is recommended for wider application in Africa as a means of highlighting the specific vulnerabilities of individual wetlands and for the improved focus of organizations which promote the ecologically sustainable use of wetlands.  相似文献   

7.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

8.
The total solvent extracts (TSE) of mineral and organic horizons of selected soils and overlying vegetation were analyzed using gas chromatography–mass spectrometry (GC–MS) to determine the composition of solvent-extractable (‘free’) lipids in soils and to study the degradation and possible preservation of vascular plant-derived molecular markers (biomarkers) in soils. Major compound classes in the TSE of soils and vegetation included a homologous series of aliphatic lipids (alkanoic acids, alkanols, alkanes), steroids, and terpenoids. Characteristic patterns of aliphatic and cyclic biomarkers derived from the overlying, native vegetation were recognized in the associated soil samples indicating the preservation of lipids from the external waxes of vascular plants in the soil organic matter (SOM). The observed biomarker patterns in the grassland soils (Brown Chernozems) were similar to the compounds identified in their major source vegetation, Western Wheatgrass. A similar composition of biomarkers was observed in Aspen leaves and the soil horizons of the forest–grassland transition soil (Dark Gray Chernozem). The Lodgepole Pine needles yielded a characteristic pattern of diterpenoids that was also detected in leaf litter and the O horizon of the associated forest soil (Brunisol). The results demonstrate that solvent extractable biomarkers derived from vascular plants maintain their characteristic pattern of aliphatic and cyclic lipids despite ongoing degradation processes and are thus valuable molecular markers for the determination of the sources of SOM. Furthermore, the abundance of aliphatic wax lipids in plant material and soils decreased at higher rates than the steroids and terpenoids indicating the preferential degradation of aliphatic over cyclic biomarkers. Most of the plant-derived steroids and terpenoids identified in the soils were unaltered, preserved biomolecules as observed in the source vegetation, but minor amounts of their degradation products were also present. Oxidation products of plant sterols are reported here for the first time in soils. The detected alteration products of steroids and diterpenoids are consistent with the oxidative degradation of free cyclic biomarkers in decomposing plant material and soils.  相似文献   

9.
Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross‐site studies have indicated that ecosystem regime shifts, associated with long‐term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well‐constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.  相似文献   

10.
Disturbed grassland soils are often cited as having the potential to store large amounts of carbon (C). Fertilization of grasslands can promote soil C storage, but little is known about the generation of recalcitrant pools of soil organic matter (SOM) with management treatments, which is critical for long-term soil C storage. We used a combination of soil incubations, size fractionation and acid hydrolysis of SOM, [C], [N], and stable isotopic analyses, and biomass quality indices to examine how fertilization and haying can impact SOM dynamics in Kansan grassland soils. Fertilized soils possessed 113% of the C possessed by soils subjected to other treatments, an increase predominantly harbored in the largest size fraction (212–2,000 μm). This fraction is frequently associated with more labile material. Haying and fertilization/haying, treatments that more accurately mimic true management techniques, did not induce any increase in soil C. The difference in 15N-enrichment between size fractions was consistent with a decoupling of SOM processing between pools with fertilization, congruent with gains of SOM in the largest size fraction promoted by fertilization not moving readily into smaller fractions that frequently harbor more recalcitrant material. Litterfall and root biomass C inputs increased 104% with fertilization over control plots, and this material possessed lower C:N ratios. Models of incubation mineralization kinetics indicate that fertilized soils have larger pools of labile organic C. Model estimates of turnover rates of the labile and recalcitrant C pools did not differ between treatments (65.5 ± 7.2 and 2.9 ± 0.3 μg C d−1, respectively). Although fertilization may promote greater organic inputs into these soils, much of that material is transformed into relatively labile forms of soil C; these data highlight the challenges of managing grasslands for long-term soil C sequestration.  相似文献   

11.
Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant–microbe–mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant‐derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial‐derived C in the silt‐clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above‐ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0–5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata‐invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co‐metabolism of pine‐derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems.  相似文献   

12.
黄土丘陵沟壑区不同植被恢复格局下土壤微生物群落结构   总被引:12,自引:4,他引:8  
胡婵娟  郭雷  刘国华 《生态学报》2014,34(11):2986-2995
针对典型黄土丘陵沟壑区陕西延安羊圈沟小流域坡面上单一刺槐林、单一撂荒草地以及林草搭配的草地-林地-草地及林地-草地-林地4种不同植被格局,利用磷脂脂肪酸(phospholipid fatty acid,PLFA)谱图分析法对土壤微生物群落结构进行监测研究,旨在揭示坡面上不同的植被恢复格局对土壤微生物群落结构的影响。研究发现4种不同植被格局下,2种林草搭配的植被格局磷脂脂肪酸的结构比较相似,与单一植被格局相比,表层土壤中表征真菌的特征脂肪酸所占的比例有所提高。主成分分析显示4种植被格局0—10 cm土壤微生物群落结构存在差异,差异主要存在于2种林草搭配的植被格局与2种单一的植被格局之间,其中草地-林地-草地的植被格局与刺槐林和撂荒草地之间土壤微生物群落结构的差异均达到了显著水平。不同微生物菌群的量在4种植被格局土壤间显著性差异主要存在于表层土壤中的细菌菌群和革兰氏阳性菌,革兰氏阴性菌和真菌在4种植被格局土壤之间无显著差异。总之,4种不同植被恢复格局的土壤微生物群落结构存在差异且差异主要存在于表层土壤,坡面上人工林的种植及林草搭配的恢复模式较直接撂荒更有利于提高微生物菌群的生物量。  相似文献   

13.
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long‐term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM‐dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition—e.g. most AM‐dominated forests—enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM‐dominance in three temperate forests. By focusing on sites where AM‐ and ECM‐plants co‐occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM‐dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM.  相似文献   

14.
Effects of Grazing on Restoration of Southern Mixed Prairie Soils   总被引:6,自引:0,他引:6  
A comparative analysis of soils and vegetation from cultivated areas reseeded to native grasses and native prairies that have not been cultivated was conducted to evaluate restoration of southern mixed prairie of the Great Plains over the past 30 to 50 years. Restored sites were within large tracts of native prairie and part of long‐term grazing intensity treatments (heavy, moderate, and ungrazed), allowing evaluation of the effects of grazing intensity on prairie restoration. Our objective was to evaluate restored and native sites subjected to heavy and moderate grazing regimes to determine if soil nutrients from reseeded cultivated land recovered after 30 years of management similar to the surrounding prairie and to identify the interactive influence of different levels of grazing and history of cultivation on plant functional group composition and soils in mixed prairies. For this mixed prairie, soil nitrogen and soil carbon on previously cultivated sites was 30 to 40% lower than in uncultivated native prairies, indicating that soils from restored sites have not recovered over the past 30 to 50 years. In addition, it appears that grazing alters the extent of recovery of these grassland soils as indicated by the significant interaction between grazing intensity and cultivation history for soil nitrogen and soil carbon. Management of livestock grazing is likely a critical factor in determining the potential restoration of mixed prairies. Heavy grazing on restored prairies reduces the rate of soil nutrient and organic matter accumulation. These effects are largely due to changes in composition (reduced tallgrasses), reduced litter accumulation, and high cover of bare ground in heavily grazed restored prairies. However, it is evident from this study that regardless of grazing intensity, restoration of native prairie soils requires many decades and possibly external inputs to adequately restore organic matter, soil carbon, and soil nitrogen.  相似文献   

15.
Soil organic matter (SOM) is the largest terrestrial C pool, and retention and release of dissolved organic matter (DOM) cause formation and loss of SOM. However, we lack information on how different sources of DOM affect its chemical composition, and how DOM chemical composition affects retention. We studied seasonal controls on DOM production and chemical controls on retention in soils of a temperate coniferous forest. The O horizon was not usually the dominant source for dissolved organic C (DOC) or N (DON) as has been reported for other sites. Rather, net production of both DOC and DON was often greater in the shallow mineral soil (0–10 cm) than in the O horizon. DOM production in the shallow mineral soil may be from root exudation as well as turnover of fine roots and microflora in the rhizosphere. In the field, the two acid fractions (hydrophobic and hydrophilic acids) dominated the soil solution at all depths. A major portion of net production and removal of total DOC within the soil column was explained by increases and decreases in these fractions, although a shift in chemical composition of DOM between the O and mineral soil horizons suggested different origins of DOM in these layers. A larger loss of the free amino fraction to deep soil water at this study site than at other sites suggested lower retention of labile DON. Field DOM removal measurements suggest that field-measured parameters may provide a good estimate for total DOM retained in mineral soil.  相似文献   

16.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

17.
The temperature sensitivity of soil organic matter (SOM) decomposition is a source of uncertainty in models of soil-climate feedbacks. However, empirical studies have given contradictory results concerning the temperature response of SOM fractions, even as the understanding of the chemical nature of SOM is evolving. The carbon-quality temperature (CQT) hypothesis states that more ‘recalcitrant’ SOM should have higher temperature sensitivity. Incubation studies have often shown a negative correlation between soil respiration rates and temperature sensitivity. However, there have been important exceptions to these results which challenge the assumption that older SOM is necessarily more chemically complex. We asked whether we would expect a universal relationship between temperature sensitivity and soil respiration given that SOM decomposition is influenced by factors other than chemical complexity. We examined temperature sensitivity in long-term incubations of four soils representing two biomes and two ecosystem-level manipulations. Soils from a manipulative climate experiment in Pacific Northwest grasslands demonstrated an increase in temperature sensitivity with incubation duration, but soil from a 20-year input manipulation study in a Northeastern forest showed no relationship of temperature sensitivity with either carbon depletion or incubation time. Furthermore, across all four soils, the temperature sensitivity of soil respiration was frequently inconsistent with indices of carbon quality and did not show a negative correlation with soil respiration rate. We conclude that the CQT hypothesis fails to universally capture the temperature sensitivity of SOM decomposition across environmental contexts, consistent with an emerging understanding of the multiplicity of factors that control soil carbon cycling.  相似文献   

18.
Management options for reducing CO2 emissions from agricultural soils   总被引:18,自引:0,他引:18  
Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions.Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates.Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.  相似文献   

19.
Anthropogenic perturbations have profoundly modified the Earth's biogeochemical cycles, the most prominent of these changes being manifested by global carbon (C) cycling. We investigated long‐term effects of human‐induced land‐use and land‐cover changes from native tropical forest (Kenya) and subtropical grassland (South Africa) ecosystems to agriculture on the dynamics and structural composition of soil organic C (SOC) using elemental analysis and integrated 13C nuclear magnetic resonance (NMR), near‐edge X‐ray absorption fine structure (NEXAFS) and synchrotron‐based Fourier transform infrared‐attenuated total reflectance (Sr‐FTIR‐ATR) spectroscopy. Anthropogenic interventions led to the depletion of 76%, 86% and 67% of the total SOC; and 77%, 85% and 66% of the N concentrations from the surface soils of Nandi, Kakamega and the South African sites, respectively, over a period of up to 100 years. Significant proportions of the total SOC (46–73%) and N (37–73%) losses occurred during the first 4 years of conversion indicating that these forest‐ and grassland‐derived soils contain large amounts of labile soil organic matter (SOM), potentially vulnerable to degradation upon human‐induced land‐use and land‐cover changes. Anthropogenic perturbations altered not only the C sink capacity of these soils, but also the functional group composition and dynamics of SOC with time, rendering structural composition of the resultant organic matter in the agricultural soils to be considerably different from the SOM under natural forest and grassland ecosystems. These molecular level compositional changes were manifested: (i) by the continued degradation of O‐alkyl and acetal‐C structures found in carbohydrate and holocellulose biomolecules, some labile aliphatic‐C functionalities, (ii) by side‐chain oxidation of phenylpropane units of lignin and (iii) by the continued aromatization and aliphatization of the humic fractions possibly through selective accumulation of recalcitrant H and C substituted aryl‐C and aliphatic‐C components such as (poly)‐methylene units, respectively. These changes appeared as early as the fourth year after transition, and their intensity increased with duration of cultivation until a new quasi‐equilibrium of SOC was approached at about 20 years after conversion. However, subtle but persistent changes in molecular structures of the resultant SOM continued long after (up to 100 years) a steady state for SOC was approached. These molecular level changes in the inherent structural composition of SOC may exert considerable influence on biogeochemical cycling of C and bioavailability of essential nutrients present in association with SOM, and may significantly affect the sustainability of agriculture as well as potentials of the soils to sequester C in these tropical and subtropical highland agroecosystems.  相似文献   

20.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号