首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tidal freshwater ecosystems experience acute seawater intrusion associated with periodic droughts, but are expected to become chronically salinized as sea level rises. Here we report the results from an experimental manipulation in a tidal freshwater Zizaniopsis miliacea marsh on the Altamaha River, GA where diluted seawater was added to replicate marsh plots on either a press (constant) or pulse (2 months per year) basis. We measured changes in porewater chemistry (SO42?, Cl?, organic C, inorganic nitrogen and phosphorus), ecosystem CO2 and CH4 exchange, and microbial extracellular enzyme activity. We found that press (chronic) seawater additions increased porewater chloride and sulfate almost immediately, and ammonium and phosphate after 2–4 months. Chronic increases in salinity also decreased net ecosystem exchange, resulting in reduced CO2 and CH4 emissions from press plots. Our pulse treatment, designed to mimic natural salinity incursion in the Altamaha River (September and October), temporarily increased porewater ammonium concentrations but had few lasting effects on porewater chemistry or ecosystem carbon balance. Our findings suggest that long-term, chronic saltwater intrusion will lead to reduced C fixation and the potential for increased nutrient (N, P) export while acute pulses of saltwater will have temporary effects.  相似文献   

2.
Invasion by the exotic species Spartina alterniflora, which has high net primary productivity and superior reproductive capacity compared with native plants, has led to rapid organic carbon accumulation and increased methane (CH4) emission in the coastal salt marsh of China. To elucidate the mechanisms underlying this effect, the methanogen community structure and CH4 production potential as well as soil organic carbon (SOC), dissolved organic carbon, dissolved organic acids, methylated amines, aboveground biomass, and litter mass were measured during the invasion chronosequence (0–16 years). The CH4 production potential in the S. alterniflora marsh (range, 2.94–3.95 μg kg?1 day?1) was significantly higher than that in the bare tidal mudflat. CH4 production potential correlated significantly with SOC, acetate, and trimethylamine concentrations in the 0–20 cm soil layer. The abundance of methanogenic archaea also correlated significantly with SOC, and the dominant species clearly varied with S. alterniflora-driven SOC accumulation. The acetotrophic Methanosaetaceae family members comprised a substantial proportion of the methanogenic archaea in the bare tidal mudflat while Methanosarcinaceae family members utilized methylated amines as substrates in the S. alterniflora marsh. Ordination analysis indicated that trimethylamine concentration was the primary factor inducing the shift in the methanogenic archaea composition, and regressive analysis indicated that the facultative family Methanosarcinaceae increased linearly with trimethylamine concentration in the increasingly sulfate-rich salt marsh. Our results indicate that increased CH4 production during the S. alterniflora invasion chronosequence was due to increased levels of the non-competitive substrate trimethylamine and a shift in the methanogenic archaea community.  相似文献   

3.
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.  相似文献   

4.
Although methanogenic pathways generally produce equimolar amounts of carbon dioxide and methane, CO2 concentrations are often reported to be higher than CH4 concentrations in both field and laboratory incubation studies of peat decomposition. In field settings, higher pore water concentrations of CO2 may result from the loss of methane by: (1) ebullition due to the low solubility of methane in pore water and (2) vascular-plant transport. Higher CO2 concentrations may also be caused by: (1) production of additional CO2 by high-molecular weight (HMW) organic matter (OM) fermentation and/or (2) respiration from non-methanogenic pathways. In this study of a peatland where advection and transverse dispersion were the dominant pore water solute transport mechanisms, an isotope-mass balance approach was used to determine the proportions of CO2 formed from non-fractionating OM respiration and HMW fermentation relative to CO2 production from methanogenesis. This approach also allowed us to estimate the loss of CH4 from the belowground system. The pathways of CO2 production varied with depth and surface vegetation type. In a Carex-dominated fen, methane production initially produced 40 % of the total CO2 and then increased to 90–100 % with increasing depth. In a Sphagnum-dominated bog, methanogenesis resulted in 60 % of total CO2 production which increased to 100 % at depth. Both bogs and fens showed 85–100 % of methane loss from pore waters. Our results indicate that the isotopic composition of dissolved CO2 is a powerful indicator to allow partitioning of the processes affecting peat remineralization and methane production.  相似文献   

5.
Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (?8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.  相似文献   

6.
The impact of salt-water intrusion on microbial organic carbon (C) mineralization in tidal freshwater marsh (TFM) soils was investigated in a year-long laboratory experiment in which intact soils were exposed to a simulated tidal cycle of freshwater or dilute salt-water. Gas fluxes [carbon dioxide (CO2) and methane (CH4)], rates of microbial processes (sulfate reduction and methanogenesis), and porewater and solid phase biogeochemistry were measured throughout the experiment. Flux rates of CO2 and, surprisingly, CH4 increased significantly following salt-water intrusion, and remained elevated relative to freshwater cores for 6 and 5 months, respectively. Following salt-water intrusion, rates of sulfate reduction increased significantly and remained higher than rates in the freshwater controls throughout the experiment. Rates of acetoclastic methanogenesis were higher than rates of hydrogenotrophic methanogenesis, but the rates did not differ by salinity treatment. Soil organic C content decreased significantly in soils experiencing salt-water intrusion. Estimates of total organic C mineralized in freshwater and salt-water amended soils over the 1-year experiment using gas flux measurements (18.2 and 24.9 mol C m?2, respectively) were similar to estimates obtained from microbial rates (37.8 and 56.2 mol C m?2, respectively), and to losses in soil organic C content (0 and 44.1 mol C m?2, respectively). These findings indicate that salt-water intrusion stimulates microbial decomposition, accelerates the loss of organic C from TFM soils, and may put TFMs at risk of permanent inundation.  相似文献   

7.
Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%?80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.  相似文献   

8.
Studies conducted across northern Europe and North America have shown increases in dissolved organic carbon (DOC) in aquatic systems in recent decades. While there is little consensus as to the exact mechanisms for the increases in DOC, hypotheses converge on such climate change factors as warming, increased precipitation variability, and changes in atmospheric deposition. In this study, we tested the effects of warming on peat porewater composition by actively warming a peatland with infrared lamps mounted 1.24 m above the peat surface for 3 years. Mean growing season peat temperatures in the warmed plots (n = 5) were 1.9 ± 0.4 °C warmer than the control plots at 5 cm depth (t statistic = 5.03, p = 0.007). Mean porewater DOC concentrations measured throughout the growing season were 15 % higher in the warmed plots (73.4 ± 3.2 mg L?1) than in the control plots (63.7 ± 2.1 mg L?1) at 25 cm (t = 4.69, p < 0.001). Furthermore, DOC from the warmed plots decayed nearly twice as fast as control plot DOC in laboratory incubations, and exhibited lower aromaticity than control plot porewater (reduction in SUVA254 in heated plots compared with control plots). Dissolved organic nitrogen (DON) concentrations tracked DOC patterns as expected, but the amount of dissolved N per unit C decreased with warming. Previous work has shown that warming increased net primary production at this site, and together with measured increases in the activities of chitinases and glucosidases we suggest that the increased DOC concentrations observed with warming were derived in part from microbial-plant interactions in the rhizosphere. We also detected more nitrogen containing compounds with higher double bond equivalents (DBE) unique to the warmed plots, within the pool of biomolecules able to deprotonate (16 % of all compounds identified using ultrahigh resolution ion electrospray mass spectrometry); we suggest these compounds could be the products of increased plant, microbial, and enzyme activity occurring with warming. With continued warming in peatlands, an increase in relatively labile DOC concentrations could contribute to dissolved exports of DOC in runoff, and would likely contribute to the pool of efficient electron donors (and acceptors) in the production of CO2 and CH4 in terrestrial and aquatic environments.  相似文献   

9.
韩广轩 《生态学报》2017,37(24):8170-8178
潮汐盐沼湿地具有高的碳积累速率和低的CH_4排放量,是地球上最密集的碳汇之一。同时,气候变暖和海平面上升可能使得盐沼湿地更迅速的捕获和埋藏大气中的CO_2,因此盐沼湿地的"蓝碳"在减缓气候变化方面扮演着重要角色。潮汐盐沼湿地与其他湿地类型最大的区别和最显著的特征是在周期性潮汐作用下出现淹没和暴露,同时伴随盐分表聚与淋洗的干湿交替,可能是控制盐沼湿地碳交换过程和碳收支平衡的关键因素。但是,当前潮汐水动力过程及其周期性干湿交替对盐沼湿地碳交换关键过程和碳汇形成机制的影响尚不十分清楚。另外,以往相关研究通常孤立地考虑垂直方向上CO_2或CH_4交换或横向方向上的可溶性有机碳(DOC)、可溶性无机碳(DIC)、颗粒有机碳(POC)交换通量对盐沼湿地碳平衡进行评估,显然不够准确。因此,为了精确评估和预测盐沼湿地蓝碳的吸存能力,必须系统研究潮汐不同阶段对盐沼湿地碳交换过程的影响;深入分析潮汐作用下盐沼湿地碳交换的微生物机制;关注潮汐水动力作用对盐沼湿地DOC、DIC和POC产生、释放以及向邻近水体输出的影响;阐明潮汐作用对盐沼湿地碳汇形成机制的影响;纳入潮汐水动力过程作为变量,建立盐沼湿地碳循环模型。  相似文献   

10.
Salinity changes resulting from storm surge, tides, precipitation, and stormwater run-off are common in coastal wetlands. Soil microbial communities respond quickly to salinity changes, altering the rate of soil organic carbon (SOC) loss and associated biogeochemical processes. This study quantified the impact of salinity-altering pulses on SOC loss, defined as microbial respiration (CO2 flux) at high and low tide, CH4 flux, and dissolved OC (DOC) release, in 3 intertidal wetlands (Jacksonville, FL, USA). Intact soil cores from a freshwater tidal, brackish, and salt marsh were exposed to simulated tides and 3 salinity pulsing events during a 53-day laboratory experiment. Soil and water physio-chemical properties, nutrient release, and microbial indicators were measured. Microbial respiration was the dominate pathway of SOC loss (>97 %). Soil hydraulic conductivity was greater in brackish and salt marshes and was critical to overall soil respiration. High tide CO2 flux was greatest in the freshwater marsh (58 % of SOC loss) and positively correlated with DOC concentration; low tide CO2 flux was greatest in brackish and salt marshes (62 and 70 % of SOC loss, respectively) and correlated with NH4 + and microbial biomass. The freshwater marsh was sensitive to brackish pulses, causing a 112 % increase in respiration, presumably from accelerated sulfate reduction and N-cycling. SOC loss increased in the salt marsh pulsed with freshwater, suggesting freshwater run-off may reduce a salt marsh’s ability to keep-pace with sea level rise. Increased inundation from storm surges could accelerate SOC loss in freshwater marshes, while decreasing SOC loss in brackish and salt marshes.  相似文献   

11.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

12.
Active processes of permafrost thaw in Western Siberia increase the number of soil subsidencies, thermokarst lakes and thaw ponds. In continuous permafrost zones, this process promotes soil carbon mobilisation to water reservoirs, as well as organic matter (OM) biodegradation, which produces a permanent flux of carbon dioxide (CO2) to the atmosphere. At the same time, the biogeochemical evolution of aquatic ecosystems situated in the transition zone between continuous permafrost and permafrost-free terrain remains poorly known. In order to better understand the biogeochemical processes that occur in thaw ponds and lakes located in discontinuous permafrost zones, we studied ~30 small (1–100,000 m2) shallow (<1 m depth) lakes and ponds formed as a result of permafrost subsidence and thaw of the palsa bog located in the transition zone between the tundra and forest-tundra (central part of Western Siberia). There is a significant increase in dissolved CO2 and methane (CH4) concentration with decreasing water body surface area, with the largest supersaturation with respect to atmospheric CO2 and CH4 in small (<100 m2) permafrost depressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, and metal concentrations also progressively increase from large lakes to thaw ponds and depressions. As such, small water bodies with surface areas of 1–100 m2 that are not accounted for in the existing lake and pond databases may significantly contribute to CO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved trace elements and organic carbon. In situ lake water incubation experiments yielded negligible primary productivity but significant oxygen consumption linked to the mineralisation rate of dissolved OM by heterotrophic bacterioplankton, which produce a net CO2 flux to the atmosphere of 5 ± 2.5 mol C m2 year?1. The most significant result of this study, which has long-term consequences on our prediction of aquatic ecosystem development in the course of permafrost degradation is CO2, CH4, and DOC concentrations increase with decreasing lake age and size. As a consequence, upon future permafrost thaw, the increase in the number of small water bodies, accompanied by the drainage of large thermokarst lakes to the hydrological network, will likely favour (i) the increase of DOC and colloidal metal stocks in surface aquatic systems, and (ii) the enhancement of CO2 and CH4 fluxes from the water surface to the atmosphere. According to a conservative estimation that considers that the total area occupied by water bodies in Western Siberia will not change, this increase in stocks and fluxes could be as high as a factor of ten.  相似文献   

13.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

14.
Arp  W. J.  Drake  B. G.  Pockman  W. T.  Curtis  P. S.  Whigham  D. F. 《Plant Ecology》1993,(1):133-143
Elevated atmospheric CO2 is known to stimulate photosynthesis and growth of plants with the C3 pathway but less of plants with the C4 pathway. An increase in the CO2 concentration can therefore be expected to change the competitive interactions between C3 and C4 species. The effect of long term exposure to elevated CO2 (ambient CO2 concentration +340 µmol CO2 mol-1) on a salt marsh vegetation with both C3 and C4 species was investigated. Elevated CO2 increased the biomass of the C3 sedgeScirpus olneyi growing in a pure stand, while the biomass of the C4 grassSpartina patens in a monospecific community was not affected. In the mixed C3/C4 community the C3 sedge showed a very large relative increase in biomass in elevated CO2 while the biomass of the C4 species declined.The C4 grassSpartina patens dominated the higher areas of the salt marsh, while the C3 sedgeScirpus olneyi was most abundant at the lower elevations, and the mixed community occupied intermediate elevations.Scirpus growth may have been restricted by drought and salt stress at the higher elevations, whileSpartina growth at the lower elevations may be affected by the higher frequency of flooding. Elevated CO2 may affect the species distribution in the salt marsh if it allowsScirpus to grow at higher elevations where it in turn may affect the growth ofSpartina.  相似文献   

15.
Vernal pools are small, seasonal wetlands that are a common landscape feature contributing to biodiversity in northeastern North American forests. Basic information about their biogeochemical functions, such as carbon cycling, is limited. Concentrations of dissolved methane (CH4) and carbon dioxide (CO2) and other water chemistry parameters were monitored weekly at the bottom and surface of four vernal pools in central and eastern Maine, USA, from April to August 2016. The vernal pools were supersaturated with respect to CH4 and CO2 at all sampling dates and locations. Concentrations of dissolved CH4 and CO2 ranged from 0.4 to 210 μmol L?1 and 72–2300 μmol L?1, respectively. Diffusive fluxes of CH4 and CO2 into the atmosphere ranged from 0.2 to 73 mmol m?2 d?1, and 30–590 mmol m?2 d?1, respectively. During the study period, the four vernal pools emitted 0.1–5.8 kg C m?2 and 9.6–120 kg C m?2 as CH4 and CO2, respectively. The production fluxes (production rates normalized to surface area) of CH4 and CO2 ranged from ? 0.02 to 0.66 and 0.40–4.6 g C m?2 d?1, respectively, and increased significantly over the season. Methane concentrations were best predicted by alkalinity, ortho-phosphate and depth, while CO2 concentrations were best predicted with only alkalinity. Alkalinity as a predictor variable highlights the importance of anaerobic respiration in production of both gases. Our study pools had large concentrations and effluxes of CH4 and CO2 compared to permanently inundated wetlands, indicating vernal pools are metabolically active sites and may be important contributors to the global carbon budget.  相似文献   

16.
Conversion of CO2 to organic compounds in hydrothermal systems is important in understanding prebiotic chemical evolution leading to the origin of life. However, organic compounds with carbon number of more than 3 have never been produced from dissolved CO2 in simulated hydrothermal experiments. In this paper, we report that not only CH4, C2H6 and C3H8, but also n-C4H10 and n-C5H12 could be produced from dissolved CO2 and H2 in the presence of cobalt-bearing magnetite at 300°C and 30 MPa. It is shown that unbranched alkanes in Anderson–Schulz–Flory distribution were the dominant hydrocarbon products produced from dissolved CO2 catalyzed by cobalt-bearing magnetite under certain hydrothermal conditions. It is proposed that magnetite with other transition metals may act potentially as effective mineral catalysts for abiotic formation of organic compounds from dissolved CO2 in hydrothermal systems.  相似文献   

17.

Aims

Plant growth forms can influence carbon cycling, particularly in carbon-rich ecosystems like northern peatlands; however, mechanistic evidence of this relationship is limited. Our aim was to determine if northern peatland plant growth forms alter belowground dissolved carbon chemistry and enhance carbon release through stimulated microbial metabolism.

Methods

We used replicated, peat monoliths populated exclusively by Sphagnum mosses, graminoids, or bare peat and quantified changes in belowground dissolved organic carbon chemistry, microbial metabolism, as well as respired CO2.

Results

The graminoid growth form was significantly distinct in belowground dissolved organic carbon chemistry with carbon compound lability 20 % and 11 % greater than bare peat and Sphagnum moss respectively. The labile dissolved organic carbon stimulated the microbial community, as indicated by greater microbial metabolic activity and richness values in conjunction with 50 % higher respired CO2 fluxes under the graminoid treatment.

Conclusions

Our results provide mechanistic evidence that peatland plant growth forms can drive carbon cycling processes by altering dissolved organic carbon chemistry to prompt cascading effects on the microbial community and carbon release — trends suggestive of microbial priming effects. Should climate change increase graminoid prevalence at the expense of Sphagnum moss northern peatland carbon store stability may be threatened by this mechanism.
  相似文献   

18.
Fenner  N.  Ostle  N.  Freeman  C.  Sleep  D.  Reynolds  B. 《Plant and Soil》2004,259(1-2):345-354
Over half of the world's peat originated from Sphagnum, representing 10–15% of the terrestrial carbon stock. However, information regarding the release and exudation of organic carbon by living Sphagnum plants into the surface peat is scarce. In this study, we examined the contribution of recent Sphagnum subnitens (Russ. and Warnst.) photosynthate carbon to the peatland dissolved organic carbon (DOC) pool. This was done using a 13CO2 pulse-chase experimental approach during the growing season. Despite the importance of Sphagnum in long-term carbon accumulation, results showed that the Sphagnum community rapidly contributes recently synthesized carbon to the peatland DOC pool. We estimate that by 4 h up to 4% of the total DOC in peat leachate was derived from 13CO2 pulse labelling at ambient CO2 concentrations. Nonetheless, a huge 64% of the 13C initially assimilated by photosynthesis was retained in Sphagnum subnitens for 23 days after labelling, consistent with the role of Sphagnum in peatland carbon accumulation. The majority of 13C loss as respired CO2 came within the few days post 13CO2 labelling, suggesting that it was derived from plant respiration of photosynthates.  相似文献   

19.
Radiocarbon isotopes are increasingly being used to investigate the age and source of carbon released from peatlands. Here we use combined 14C and δ13C measurements to determine the isotopic composition of soil and soil decomposition products [dissolved organic carbon (DOC), CO2 and CH4] in a peatland–riparian–stream transect, to establish the isotopic signature and potential connectivity between carbon pools. Sampling was conducted during two time periods in 2012 to investigate processes under different temperature, hydrological and flux conditions. Isotopic differences existed in the peatland and riparian zone soil organic matter as a result of the riparian depositional formation. The peatland had a mean radiocarbon age of 551 ± 133 years BP, with age increasing with depth, and δ13C values consistent with C3 plant material as the primary source. In contrast the riparian zone had a much older radiocarbon age of 1,055 ± 107 years BP and showed no age/depth relationship; δ13C in the riparian zone was also consistent with C3 plant material. With the exception of DOC in September, soil decomposition products were predominately >100 %modern with 14C values consistent with derivation from organic matter fixed in the previous 5 years. Emissions of CO2 and CH4 from the soil surface were also modern. In contrast, CO2 and CH4 evaded from the stream surface was older (CH4: 310–537 years BP, CO2: 36 years BP to modern) and contained a more complex mix of sources combining soil organic matter and geogenic carbon. The results suggest considerable vertical transport of modern carbon to depth within the soil profile. The importance of modern recently fixed carbon and the differences between riparian and stream isotopic signatures suggests that the peatland (not the riparian zone) is the most important source of carbon to stream water.  相似文献   

20.
The effects of elevated atmospheric CO2 (eCO2) and water table draw-down on soil carbon sequestration in an ombrotrophic bog ecosystem were examined. Peat monoliths (11 cm diameter, 25 cm deep) with intact bog vegetation were exposed to ambient or elevated (ambient + 200 mg l?1) atmospheric CO2, combined with a natural water table (level with the peat surface) or a water table draw-down (?5 cm). Eight observations per treatment were included in the study, which was conducted over a 12 week period. Concentration of dissolved organic carbon (DOC), phenolic compounds and the fluxes of CO2 and CH4 were measured. The eCO2 treatment caused an increase in the CH4 and CO2 fluxes and a small decrease in both the DOC and phenolic concentrations. The water table draw-down invoked decreases in phenolic and DOC concentrations, a decrease in CH4 flux and a small increase in CO2 flux. The combined (eCO2 + water table draw-down) treatment caused a larger than expected CH4 flux decrease and CO2 flux increase and an increase in DOC concentration. Our results suggest very different effects on the system dependent on the treatment applied. The draw-down treatment principally increased oxidation of the rhizosphere resulting in increased decomposition and as such a removal of material from the dissolved carbon pool. The data also suggest labile carbon availability may be limiting the rate of decomposition and so slowing inorganic nutrient and carbon pool turn-over. The elevated CO2 addressed the labile-carbon limitation. Under the environment of the combined treatment, these limitations were effectively removed, culminating in a destabilisation of the carbon-sequestering environment to a weaker sink (or even a source) of atmospheric carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号