首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic carbon (DOC) and nitrogen (DON) concentrations were quantified in urban and rural watersheds located in central Texas, USA between 2007 and 2008. The proportion of urban land use ranged from 6 to 100% in our 12 study watersheds which included nine watersheds without waste water treatment plants (WWTP) and three watersheds sampled downstream of a WWTP. Annual mean DOC concentrations ranged 20.4–52.5 mg L?1. Annual mean DON concentrations ranged 0.6–1.9 mg L?1. Only the rural watersheds without a WWTP had significantly lower DOC concentrations compared to those watersheds with a WWTP but all the streams except two had significantly reduced DON compared to those with a WWTP. Analysis of the nine watersheds without a WWTP indicated that 68% of the variability in mean annual DOC concentration was explained by urban open areas such as golf courses, sports fields and neighborhood parks under turf grass. There was no relationship between annual mean DON concentration and any land use. Urban open area also explained a significant amount of the variance in stream sodium and stream sodium adsorption ratio (SAR). Ninety-four percent of the variance in annual mean DOC concentration was explained by SAR. Irrigation of urban turf grass with domestic tap water high in sodium (>181 mg Na+ L?1) may be inducing sodic soil conditions in watershed soils in this region resulting in elevated mean annual DOC concentrations in our streams.  相似文献   

2.
Stream chemistry in permafrost regions is regulated by a variety of drivers that affect hydrologic flowpaths and watershed carbon and nutrient dynamics. Here we examine the extent to which seasonal dynamics of soil active layer thickness and wildfires regulate solute concentration in streams of the continuous permafrost region of the Central Siberian Plateau. Samples were collected from 2006 to 2012 during the frost-free season (May–September) from sixteen watersheds with fire histories ranging from 3 to 120 years. The influence of permafrost was evident through significantly higher dissolved organic carbon (DOC) concentrations in the spring, when only the organic soil horizon was accessible to runoff. As the active layer deepened through the growing season, water was routed deeper through the underlying mineral horizon where DOC underwent adsorption and concentrations decreased. In contrast, mean concentrations of major cations (Ca2+ > Na+ > Mg2+ > K+) were significantly higher in the summer, when contact with mineral horizons in the active zone provided a source of cations. Wildfire caused significantly lower concentrations of DOC in more recently burned watersheds, due to removal of a source of DOC through combustion of the organic layer. An opposite trend was observed for dissolved inorganic carbon and major cations in more recently burned watersheds. There was also indication of talik presence in three of the larger watersheds evidenced by Cl? concentrations that were ten times higher than those of other watersheds. Because climate change affects both fire recurrence intervals as well as rates of permafrost degradation, delineating their combined effects on solute concentration allows forecasting of the evolution of biogeochemical cycles in this region in the future.  相似文献   

3.
Leaf litter plays a critical role in regulating ecological functions in headwater forest streams, whereas the effects of leaves on water quality in urbanized streams are not fully understood. This study examined the potential importance of leaf litter for the release and transformations of organic carbon and nutrients in urban streams, and compared the effects with other types of natural organic substrates (periphyton and stream sediment). Nutrients and organic carbon were leached from senescent leaves of 6 tree species in the laboratory with deionized water, and maximal releases, leaching rate constants, composition and bioavailability of the leached dissolved organic carbon (DOC) were determined. Stream substrates (leaf debris, rocks with periphyton, and sediment) were seasonally collected from urban and forest reference streams of the NSF Baltimore Long-term Ecological Research Site and incubated with overlying stream water to estimate areal fluxes of DOC and nitrogen. Leaf litter leaching showed large ranges in maximal releases of DOC (7.0–131 mg g?1), dissolved organic nitrogen (DON; 0.07–1.39 mg g?1) and total dissolved phosphorus (TDP; 0.14–0.70 mg g?1) among tree species. DOC leaching rate constants, carbon to nitrogen ratios, and DOC bioavailability were all correlated with organic matter quality indicated by fluorescence spectroscopy. Results from substrate incubation experiments showed far higher DOC and DON release and nitrate retention with leaf debris than with sediment, or rocks with periphyton. DOC release from leaf debris was positively correlated with stream nitrate retention at residential and urban sites, with the highest values observed during the fall and lowest during the summer. This study suggests the potential importance of leaf litter quantity and quality on fostering DOC and nutrient release and transformations in urban streams. It also suggests that species-specific impacts of leaves should be considered in riparian buffer and stream restoration strategies.  相似文献   

4.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

5.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

6.
Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed’s carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially affecting aquatic ecosystems. In a study conducted in Iowa (USA), four treatments with strips of NPV varying in slope position and proportion of area were randomly assigned among 12 small agricultural watersheds in a balanced incomplete block design. Runoff samples from 2008 to 2010 were analyzed for DOC and correlated with flow data to determine flow weighted DOC concentrations and loads. Data were analyzed for the entire 3 years, annually, seasonally, monthly, by flow event size and for one extreme storm event. Overall we found few differences in DOC concentration with the exception that concentrations were greater in the 10 % NPV at the footslope watersheds than the 20 % NPV in contours watersheds over the 3 years, and the 100 % agricultural treatment had higher DOC concentrations than all NPV treatments during the one extreme event. Because the NPV treatments reduced runoff, DOC export tended to be highest in the 100 % agricultural watersheds over the 3 years and during high flows. We also compared two watersheds that were restored to 100 % NPV and found decreases in DOC concentrations and loads indicating that complete conversion to prairie leads to less watershed DOC export. Regression results also support the contention that increases in the percentage of NPV in the watershed decreases watershed export of DOC. Further analysis indicated that DOC concentrations were diluted as flow event size increased, independent of any treatment effects. It appears groundwater sources become an important component to flow as flow event size increases in these watersheds.  相似文献   

7.
The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L?1 and DOC concentrations ranged from 0.26 to 5.39 mg C L?1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km?2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year?1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.  相似文献   

8.
Two adjacent catchments in the Otway Ranges of Victoria, Australia (Redwater and Clearwater) produce water with markedly different concentrations of dissolved organic carbon (DOC) during summer. Water from Redwater Creek had a DOC concentration of 32 mg L–1, while water from Clearwater Creek had a DOC concentration of 3.8 mg L–1. Examination of the catchments revealed that while climate, topography, vegetation and land use were similar, the soils were different. The objective of this study was to examine the relationship between the concentration and chemical composition of DOC in stream waters and the nature of soils in the two catchments. Soil mapping determined that clayey soils formed on Cretaceous sediments (Cretaceous soils) occurred throughout both catchments, but that Redwater Catchment also contained a large area (39%) of sandy soils formed on Tertiary sediments (Tertiary soils). The concentration of DOC in forest floor leachate was high in both the Tertiary and Cretaceous areas; however, the concentration of DOC in water draining areas dominated by Tertiary soils was greater than that in water draining areas dominated by Cretaceous soils. Laboratory experiments showed that the Cretaceous soils had higher adsorption capacities for forest floor leachate DOC than the Tertiary soils. The difference in DOC concentrations of the streams was therefore attributed to the difference in adsorption capacity of catchment soils for DOC. Adsorption capacities of the soils were found to be a function of their clay contents and specific surface areas.Solid-state3C nuclear magnetic resonance spectroscopy and pyrolysis-mass spectrometry were used to determine the chemical structure of DOC found in streams and forest floor leachate samples and that remaining in solution after interaction with soil. Chemistry of DOC in forest floor leachate was similar before and after interaction with soil, indicating no preferential adsorption of a particular type of carbon. Thus, differences between the chemical structure of stream DOC and forest floor leachate DOC could be attributed to microbial modifications during its movement through soils and into the streams, rather than losses by adsorption.  相似文献   

9.
We measured CO2 and CH4 concentrations throughout the water columns of two boreal lakes with contrasting trophic status and water color during a wet summer. Previous work suggested that rainfall was important for carbon gas evasion. During the stratified period, precipitation generated unexpected variabilities in CO2, CH4, and DOC concentrations below the euphotic zone, especially in the metalimnion. The DOC concentrations after the rains rose to 22 and 10 mg L?1 from the initial 13 and 8 mg L?1, in the humic and clear-water lakes respectively, simultaneously with an increase in carbon gas concentrations. In both lakes, the water column was stable, suggesting that the high gas concentrations were not due to transport from hypolimnia rich in carbon gases. The high concentrations of CH4, which can only be produced in anoxic conditions, in the oxic metalimnion and epilimnion in comparison to the hypolimnetic concentrations indicated that a considerable proportion of the pelagic CH4 originated from the catchment and/or the littoral zone. Thus, as a consequence of high levels of precipitation, carbon gas concentrations during summer stratification can increase, which can have overall importance in annual carbon budgets.  相似文献   

10.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   

11.
Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN– DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.  相似文献   

12.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   

13.
Urbanized watersheds in colder climates experience episodic salinization due to anthropogenic salt inputs and runoff from impervious surfaces. Episodic salinization can be manifested as a ‘pulse’ in concentrations and fluxes of salt ions lasting from hours to days after snowstorms in response to road salting. Episodic salinization contributes to freshwater salinization syndrome, characterized by cascading mobilization of chemicals and shifting acid–base status. We conducted laboratory experiments and analyzed high-frequency sensor data to investigate the water quality impacts of freshwater salinization syndrome and episodic salinization across 12 watersheds draining two major metropolitan regions along the U.S. East Coast. Sediments from 12 watersheds spanning land use gradients across two metropolitan regions, Baltimore, Maryland and Washington DC, were incubated across a range of replicated salinity treatments (0–10 g/L sodium chloride). There were statistically significant linear increasing trends in calcium and potassium concentrations with experimental salinization across all 12 sites and in magnesium concentrations at 11 of 12 sites (p?<?0.05), with mean rates of increase of 1.92?±?0.31 mg-Ca per g-NaCl, 2.80?±?0.67 mg–K per g-NaCl, and 1.11?±?0.19 mg-Mg per g-NaCl, respectively. Similarly, there were statistically significant increasing linear trends in total dissolved nitrogen (TDN) concentrations with experimental salinization at 9 of the 12 sites, with a mean rate of increase of 0.07?±?0.01 mg-N per g-NaCl. There were statistically significant increasing linear trends in soluble reactive phosphorus (SRP) concentrations with experimental salinization at 7 of the 12 sites (p?<?0.05), with a mean rate of increase of 2.34?±?0.66 µg-P per g-NaCl. The response of dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations to experimental salinization varied between sites, and dissolved silica did not show any significant response. High-frequency sensors near the experimental sites showed statistically significant positive linear relationships between nitrate concentrations, specific conductance, and chloride concentrations similar to relationships observed in laboratory incubations. Our results suggested that episodic salinization and freshwater salinization syndrome can mobilize base cations and nutrients to streams through accelerated ion exchange and stimulate different biogeochemical processes by shifting pH ranges and ionic strength. The growing impacts of freshwater salinization syndrome and episodic salinization on nutrient mobilization, shifting acid–base status, and augmenting eutrophication warrant serious consideration in water quality management.  相似文献   

14.
Studies conducted across northern Europe and North America have shown increases in dissolved organic carbon (DOC) in aquatic systems in recent decades. While there is little consensus as to the exact mechanisms for the increases in DOC, hypotheses converge on such climate change factors as warming, increased precipitation variability, and changes in atmospheric deposition. In this study, we tested the effects of warming on peat porewater composition by actively warming a peatland with infrared lamps mounted 1.24 m above the peat surface for 3 years. Mean growing season peat temperatures in the warmed plots (n = 5) were 1.9 ± 0.4 °C warmer than the control plots at 5 cm depth (t statistic = 5.03, p = 0.007). Mean porewater DOC concentrations measured throughout the growing season were 15 % higher in the warmed plots (73.4 ± 3.2 mg L?1) than in the control plots (63.7 ± 2.1 mg L?1) at 25 cm (t = 4.69, p < 0.001). Furthermore, DOC from the warmed plots decayed nearly twice as fast as control plot DOC in laboratory incubations, and exhibited lower aromaticity than control plot porewater (reduction in SUVA254 in heated plots compared with control plots). Dissolved organic nitrogen (DON) concentrations tracked DOC patterns as expected, but the amount of dissolved N per unit C decreased with warming. Previous work has shown that warming increased net primary production at this site, and together with measured increases in the activities of chitinases and glucosidases we suggest that the increased DOC concentrations observed with warming were derived in part from microbial-plant interactions in the rhizosphere. We also detected more nitrogen containing compounds with higher double bond equivalents (DBE) unique to the warmed plots, within the pool of biomolecules able to deprotonate (16 % of all compounds identified using ultrahigh resolution ion electrospray mass spectrometry); we suggest these compounds could be the products of increased plant, microbial, and enzyme activity occurring with warming. With continued warming in peatlands, an increase in relatively labile DOC concentrations could contribute to dissolved exports of DOC in runoff, and would likely contribute to the pool of efficient electron donors (and acceptors) in the production of CO2 and CH4 in terrestrial and aquatic environments.  相似文献   

15.
Rice field outflow can contain high concentrations of dissolved organic carbon (DOC), which plays a crucial role in drinking water quality and aquatic ecosystem processes. This study examined the relationship between potential determining factors (i.e. rice area, outflow, drainwater reuse, soil properties, and time, measured as the day in the growing season) and the concentration and composition of DOC exported from 11 rice-dominated subwatersheds. Samples were collected from subwatershed inflow and outflow every 1–2 weeks from May through September 2008 and analyzed for DOC concentration, trihalomethane formation potential (THMFP), and also specific ultraviolet absorbance (SUVA254) and the spectral slope parameter (S), which are indicators of DOC composition. Concentrations of DOC across all subwatersheds and sampling dates ranged from 1.56 to 14.43 mg L?1 (mean = 4.32 mg L?1). Linear mixed effects (LME) analysis indicated that DOC concentration decreased over time, and that THMFP, and DOC and THM flux, decreased over time, but increased with outflow. LME analysis of the SUVA254 and S parameters indicated that the fraction of aromatic DOC moieties increased with time, outflow, and reuse. Additionally, apparent peaks in DOC concentrations, THMFP, and SUVA254 coincided with the onsets of flooding and draining. Lastly, subwatersheds with outflow less than approximately 4,700 m3 ha?1 behaved as sinks of DOC. Our findings suggest that water management factors such as outflow, reuse, and discrete irrigation events, all of which vary over the course of the growing season, were the dominant determinants of DOC concentration and composition.  相似文献   

16.
We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was ?254‰ in agricultural drains in the Sacramento–San Joaquin Delta, ?218‰ in the San Joaquin River, ?175‰ in the California State Water Project and ?152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, ?204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between ?275 and ?687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.  相似文献   

17.
This paper represents the first continuous dissolved organic carbon (DOC) record, measured in a stream draining an Atlantic blanket bog in South West Ireland for the calendar year 2007. At 30-min intervals, the DOC concentration was automatically measured using an in-stream spectroanalyser whose variation compared well with laboratory analysed samples taken by a 24-bottle auto-sampler. The concentration of DOC ranged from 2.7 to 11.5 mg L?1 with higher values during the summer and lower values during the winter. A simple linear regression model of DOC concentration versus air temperature of the previous day was found, suggesting that temperature more than discharge was controlling the DOC concentration in the stream. The change in DOC concentration with storm events showed two patterns: (1) in the colder period: the DOC concentration seemed to be independent of changes in stream flow; (2) in the warmer period: the DOC concentration was found to rise with increases in stream flow on some occasions and to decrease with increasing stream flow on other occasions. The annual export of DOC for 2007 was 14.1 (±1.5) g C m?2. This value was calculated using stream discharge data that were determined by continuously recorded measurements of stream height. The flux of DOC calculated with the 30-min sampling was compared with that calculated based on lower sampling frequencies. We found that sampling frequency of weekly or monthly were adequate to calculate the annual flux of DOC in our study site in 2007.  相似文献   

18.
Although the effects of anthropogenic nitrogen (N) inputs on the dynamics of inorganic N in watersheds have been studied extensively, “the influence of N enrichment on organic N loss” is not as well understood. We compiled and synthesized data on surface water N concentrations from 348 forested and human-dominated watersheds with a range of N loads (from less than 100 to 7,100 kg N km−2 y−1) to evaluate the effects of N loading via atmospheric deposition, fertilization, and wastewater on dissolved organic N (DON) concentrations. Our results indicate that, on average, DON accounts for half of the total dissolved N (TDN) concentrations from forested watersheds, but it accounts for a smaller fraction of TDN in runoff from urban and agricultural watersheds with higher N loading. A significant but weak correlation (r 2 = 0.06) suggests that N loading has little influence on DON concentrations in forested watersheds. This result contrasts with observations from some plot-scale N fertilization studies and suggests that variability in watershed characteristics and climate among forested watersheds may be a more important control on DON losses than N loading from atmospheric sources. Mean DON concentrations were positively correlated, however, with N load across the entire land-use gradient (r 2 = 0.37, P < 0.01), with the highest concentrations found in agricultural and urban watersheds. We hypothesize that both direct contributions of DON from wastewater and agricultural amendments and indirect transformations of inorganic N to organic N represent important sources of DON to surface waters in human-dominated watersheds. We conclude that DON is an important component of N loss in surface waters draining forested and human-dominated watersheds and suggest several research priorities that may be useful in elucidating the role of N enrichment in watershed DON dynamics.  相似文献   

19.
Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m?2 year?1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m?2 year?1). Dust-P deposition rates ranged from 87 µg P m2 day?1 in the Northwestern region to 276 µg P m2 day?1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L?1) and greater sediment phosphorus (SP) concentrations (2–5 mg g?1) than similar lakes elsewhere in the region (1–8 µg L?1 TP, 0.5–2 mg g?1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosira pseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.  相似文献   

20.
To elucidate the molecular characteristics of dissolved organic matter (DOM) in Lake Baikal, 3D excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were employed. From the linear relationship between the humic-like peak intensities (excitation/emission = 305 nm/430 nm) and dissolved organic carbon (DOC) concentrations in the water samples extending from the Selenga River mouth to offshore (central lake in the south basin), allochthonous DOM appeared to be a main contributor to the DOC concentrations. However, DOM with fewer fluorophores dominated in the South Basin of the lake at stable DOC concentrations of ca. 0.84 mg C l?1. Meanwhile, FT-ICR MS analysis and subsequent principal component analysis across the transect revealed a transition of compounds with high H-deficiency (aromatic) to compounds with low H-deficiency (aliphatic) that dominate pelagic open-lake water. We believe that this molecular change is induced by photo-degradation, which mainly alters aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号