共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
T D Fahey R Rolph 《European journal of applied physiology and occupational physiology》1975,34(2):109-112
The purpose of this study was to determine if finger tip capillary blood hematocrit is a valid estimate of anticubital venous blood hematocrit at rest and after submaximal exercise. Simultaneous samples of finger tip cpaillary and venous blood were drawn from thirty-one subjects (15 males, 16 females) before and after a 15 min submaximal exercise on a bicycle ergometer. Venous and capillary blood hcts. were 42.0% +/- 3.9 and 42.0% +/- 3.5 respectively before exercise and 43.3% +/- 3.5 and 42% +/- 3.8 after exercise (X +/- s). The regression equation for predicting venous hct. from finger tip capillary blood after exercise was: Hctv = 0.87 Hctc + 6.44 with r = 0.95 (P less than 0.05). The results indicate that the finger tip capillary microhematocrit method is a valid indicator of venous blood hct. following exercise. 相似文献
3.
4.
Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans 总被引:1,自引:0,他引:1
P Foxdal B Sj?din H Rudstam C Ostman B Ostman G C Hedenstierna 《European journal of applied physiology and occupational physiology》1990,61(3-4):218-222
The aim of the study was to investigate the distribution of lactate in plasma, whole blood, erythrocytes, and capillary finger blood, before and during submaximal exercise. Ten healthy male subjects performed submaximal graded cycle ergometer exercise for 20-25 min. Venous blood samples and capillary finger blood samples were taken before exercise and every 5th min during exercise for lactate determination. The plasma lactate concentration was significantly higher (P less than 0.001, approximately 50%) than in the erythrocytes. This difference was not altered by the venous blood lactate concentration or exercise intensity. A significant difference (P less than 0.01) in lactate concentration was also found between capillary whole blood and venous whole blood. It was concluded that direct comparisons between lactate in capillary finger blood, venous whole blood and plasma could not be made. 相似文献
5.
6.
Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runners 总被引:1,自引:0,他引:1
Hiroshi Itoh Tetsuo Ohkuwa 《European journal of applied physiology and occupational physiology》1990,60(4):271-276
The purpose of this study was to elucidate the difference in peak blood ammonia concentration between sprinters and long-distance runners in submaximal, maximal and supramaximal exercise. Five sprinters and six long-distance runners performed cycle ergometer exercise at 50% maximal, 75% maximal, maximal and supramaximal heart rates. Blood ammonia and lactate were measured at 2.5, 5, 7.5, 10 and 12.5 min after each exercise. Peak blood ammonia concentration at an exercise intensity producing 50% maximal heart rate was found to be significantly higher compared to the basal level in sprinters (P less than 0.01) and in long-distance runners (P less than 0.01). The peak blood ammonia concentration of sprinters was greater in supra-maximal exercise than in maximal exercise (P less than 0.05), while there was no significant difference in long-distance runners. The peak blood ammonia content after supramaximal exercise was higher in sprinters compared with long-distance runners (P less than 0.01). There was a significant relationship between peak blood ammonia and lactate after exercise in sprinters and in long-distance runners. These results suggest that peak blood ammonia concentration after supramaximal exercise may be increased by the recruitment of fast-twitch muscle fibres and/or by anaerobic training, and that the processes of blood ammonia and lactate production during exercise may be strongly linked in sprinters and long-distance runners. 相似文献
7.
J P Fouillot D Wassermann D Lemaigre M Rieu 《Comptes rendus des séances de la Société de biologie et de ses filiales》1975,169(5):1166-1171
The study of blood lactate concentration after a submaximum and steadfast exercise shows a lesser rise after three weeks at middle altitude. This can be related with an increase of maximum working capacity as previously demonstrated. The obtained modifications result in part from an increase in oxydative metabolism activity and perhaps from an enhancement of lactate oxydation. 相似文献
8.
Katayama K Iwamoto E Ishida K Koike T Saito M 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(10):R1167-R1175
The purpose of this study was to elucidate the influence of inspiratory muscle fatigue on muscle sympathetic nerve activity (MSNA) and blood pressure (BP) response during submaximal exercise. We hypothesized that inspiratory muscle fatigue would elicit increases in sympathetic vasoconstrictor outflow and BP during dynamic leg exercise. The subjects carried out four submaximal exercise tests: two were maximal inspiratory pressure (PI(max)) tests and two were MSNA tests. In the PI(max) tests, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and with or without inspiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were each set at 0.5 s)]. Before and immediately after exercise, PI(max) was estimated. In MSNA tests, the subjects performed two 15-min exercises (spontaneous breathing for 5 min, with or without inspiratory resistive breathing for 5 min, and spontaneous breathing for 5 min). MSNA was recorded via microneurography of the right median nerve at the elbow. PI(max) decreased following exercise with resistive breathing, whereas no change was found without resistance. The time-dependent increase in MSNA burst frequency (BF) appeared during exercise with inspiratory resistive breathing, accompanied by an augmentation of diastolic BP (DBP) (with resistance: MSNA, BF +83.4%; DBP, +23.8%; without resistance: MSNA BF, +19.2%; DBP, -0.4%, from spontaneous breathing during exercise). These results suggest that inspiratory muscle fatigue induces increases in muscle sympathetic vasomotor outflow and BP during dynamic leg exercise at mild intensity. 相似文献
9.
Changes in blood leucocyte populations induced by acute maximal and chronic submaximal exercise 总被引:2,自引:0,他引:2
A Ferry F Picard A Duvallet B Weill M Rieu 《European journal of applied physiology and occupational physiology》1990,59(6):435-442
Absolute (x 10(3).mm-3) or relative (%) numbers of blood leucocyte types (monocytes, lymphocytes, neutrophils) and lymphocyte subsets (T11+, T4+, T8+, B1+, and NKH1+) reacting with specific monoclonal antibodies were determined at rest, immediately after maximal exercise on a treadmill, in six controls (C), and in six young cyclists before training (BT) and after 5 months of training (AT). Maximal exercise significantly increased the absolute number (mobilization) of virtually all the types of leucocytes and subsets of lymphocytes in C, BT and AT subjects. In these subjects mobilization of natural killer cells (NKH1+) and cytotoxic/suppressor T lymphocytes (T8+) was greater than mobilization of the other leucocyte types and lymphocyte subsets; however, maximal exercise induced no significant changes in the relative numbers of any leucocyte types and lymphocyte subsets, except in the case of T4+ lymphocytes in At cyclists. Chronic submaximal exercise induced increased mobilization of neutrophils and decreased mobilization of lymphocytes during maximal exercise, except in the case of B lymphocytes (B1+) and NKH1+ cells, and decreases in the absolute and relative number of neutrophils at rest. It remains to be seen how these results can explain the modifications of leucocyte activities noted in vitro after isolated or chronic exercise. 相似文献
10.
Timothy I Musch Kevin E Eklund K Sue Hageman David C Poole 《Journal of applied physiology》2004,96(1):81-88
Maximal aerobic capacity and the ability to sustain submaximal exercise (Ex) declines with advancing age. Whether altered muscle blood flow (BF) plays a mechanistic role in these effects remains to be resolved. The present investigation determined the effects of aging on the hemodynamic and regional BF response to submaximal Ex in rats. Heart rate (HR), mean arterial pressure (MAP), and BF to different organs (kidneys, splanchnic organs, and 28 hindlimb muscles) were determined at rest and during submaximal treadmill Ex (20 m/min, 5% grade) with radiolabeled microspheres in young (Y; 6-8 mo old, 339 +/- 8 g, n = 9) and old (O; 27-29 mo old, 504 +/- 18 g, n = 7) Fischer 344 x Brown Norway rats. Results demonstrated that HR, MAP, and BF to the pancreas, small and large intestine, and total hindlimb musculature were similar between Y and O rats at rest. BF to the kidneys, spleen, and stomach were 33, 60, and 43% lower, respectively, in O compared with Y rats. BF to the total hindlimb musculature increased (P < 0.05) during Ex and was similar for both Y and O rats (Y: 16 +/- 3 to 124 +/- 7 vs. O: 20 +/- 3 to 137 +/- 12 ml.min-1.100 g-1). However, in O vs. Y rats, BF was reduced in 6 (highly oxidative) and elevated in 8 (highly glycolytic) of the 28 individual hindquarter muscles or muscle parts examined (P < 0.05). During Ex, BF to the spleen and stomach decreased (P < 0.05) from rest in Y rats, whereas BF decreased in the kidneys, pancreas, spleen, stomach, as well as the small and large intestines of O rats. In conclusion, these data demonstrate that, despite similar increases in total hindlimb BF in Y and O rats during submaximal Ex, there is a profound BF redistribution from highly oxidative to highly glycolytic muscles. 相似文献
11.
Prolonged submaximal exercise and L-carnitine in humans 总被引:1,自引:0,他引:1
S Oyono-Enguelle H Freund C Ott M Gartner A Heitz J Marbach F Maccari A Frey H Bigot A C Bach 《European journal of applied physiology and occupational physiology》1988,58(1-2):53-61
Changes in the main physiological parameters and circulating indicators of carbohydrate, protein, lipid (and ketone body) metabolism were measured in ten exercising subjects before L-carnitine (L-carn) loading, after 4 weeks of daily loading with 2 g L-carn, and 6-8 weeks after terminating L-carn administration. Measurements were made on venous blood samples collected during each experiment at fixed time intervals over an initial rest of 45 min, 60 min bicycle exercise performed near 50% VO2max and 120 min recovery. Free and total plasma carnitine levels reached a plateau corresponding to an average rise of 25% for both fractions, 9-10 days after the beginning of the L-carn diet. These levels returned to their initial values 6-8 weeks after cessation of the supply. Generally L-carn supplementation did not significantly modify the physiological parameters and circulating metabolites. No distinct increase of the relative participation of endogenous lipids in the fuel supply of prolonged submaximal exercise was observed. In normal human subjects the increased demand for fatty acid oxidation resulting from exercise seems to be adequately supported by endogenous levels of carnitine. 相似文献
12.
13.
MacDonald JR MacDougall JD Interisano SA Smith KM McCartney N Moroz JS Younglai EV Tarnopolsky MA 《European journal of applied physiology and occupational physiology》1999,79(2):148-154
Our purposes were (1) to examine resting arterial blood pressure following an acute bout of resistance exercise and submaximal dynamic exercise, (2) to examine the effects of these exercises on the plasma concentrations of atrial natriuretic peptide ([ANP]), and (3) to evaluate the potential relationship between [ANP] and post-exercise blood pressure. Thirteen males [24.3+/-(2.4) years] performed 15 min of unilateral leg press exercise (65% of their one-repetition maximum) and, I week later, approximately 15 min of cycle ergometry (at 65% of their maximum oxygen consumption). Intra-arterial pressure was monitored during exercise and for 1 h post-exercise. Arterial blood was drawn at rest, during exercise and at intervals up to 60 min post-exercise for analysis of haematocrit and [alphaANP]. No differences occurred in blood pressure between trials, but significant decrements occurred following exercise in both trials. Systolic pressure was approximately 20 mmHg lower than before exercise after 10 min, and mean pressure was approximately 7 mmHg lower from 30 min onwards. Only slight (non-significant) elevations in [alphaANP] were detected immediately following exercise, with the concentrations declining to pre-exercise values by 5 min post-exercise. We conclude that post-exercise hypotension occurs following acute bouts of either resistance or submaximal dynamic exercise and, in this investigation, that this decreased blood pressure was not directly related to the release of alphaANP. 相似文献
14.
Banerjee AK Mandal A Chanda D Chakraborti S 《Molecular and cellular biochemistry》2003,253(1-2):307-312
Generation of reactive oxygen species (ROS) is a normal process in the life of aerobic organisms. Under physiological conditions, these deleterious species are mostly removed by the cellular antioxidant systems, which include antioxidant vitamins, protein and non-protein thiols, and antioxidant enzymes. Since the antioxidant reserve capacity in most tissues is rather marginal, strenuous physical exercise characterized by a remarkable increase in oxygen consumption with concomitant production of ROS presents a challenge to the antioxidant systems.An acute bout of exercise at sufficient intensity has been shown to stimulate activities of antioxidant enzymes. This could be considered as a defensive mechanism of the cell under oxidative stress. However, prolonged heavy exercise may cause a transient reduction of tissue vitamin E content and a change of glutathione redox status in various body tissues. Deficiency of antioxidant nutrients appears to hamper antioxidant systems and augment exercise-induced oxidative stress and tissue damage. Chronic exercise training seems to induce activities of antioxidant enzymes and perhaps stimulate GSH levels in body fluids. Recent research suggest that supplementation of certain antioxidant nutrients are necessary for physically active individuals. 相似文献
15.
Muscle temperature during submaximal exercise in man 总被引:5,自引:0,他引:5
16.
John A. Smith Marysia Kolbuch-Braddon Ian Gillam Richard D. Telford Maurice J. Weidemann 《European journal of applied physiology and occupational physiology》1995,70(5):427-436
Red blood cell (RBC) susceptibility to oxidative and osmotic stress in vitro was investigated in cells from trained and untrained men before and after submaximal exercise. Whilst no significant change in peroxidative haemolysis occurred immediately after 1 h of cycling at 60% of maximal aerobic capacity (
max), a 20% increase was found 6 h later in both groups (P<0.05). The RBC osmotic fragility decreased by 15% immediately after exercise (P<0.001) and this was maintained for 6 h (Ps<0.001). There was an associated decrease in mean cell volume (P<0.05). Training decreased RBC susceptibility to peroxidative haemolysis (P<0.025) but it did not influence any other parameter. These exercise-induced changes were smaller in magnitude but qualitatively similar to those found in haemopathological states involving haem-iron incorporation into membrane lipids and the short-circuiting of antioxidant protection. To explore this similarity, a more strenuous and mechanically stressful exercise test was used. Running at 75%
max for 45 min reduced the induction time of O2 uptake (peroxidation), consistent with reduced antioxidation capacity, and increased the maximal rate of O2 uptake in RBC challenged with cumene hydroperoxide (P<0.001). The proportion of high-density RBC increased by 10% immediately after running (P<0.001) but no change in membrane-incorporated haem-iron occurred. In contrast, treatment of RBC with oxidants (20–50 mol·l–1 in vitro increased cell density and membrane incorporation of haem-iron substantially. These results showed that single episodes of submaximal exercise caused significant changes in RBC susceptibility to oxidative and osmotic stress. Such responses may account for the increase in RBC turnover found in athletes undertaking strenuous endurance training. 相似文献
17.
Joaquin U Gonzales Benjamin C Thompson John R Thistlethwaite Allison J Harper Barry W Scheuermann 《Journal of applied physiology》2007,103(6):1950-1957
To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 +/- 4.0 (SD) vs. men 24.9 +/- 4.5 yr] but different forearm muscle strength (women 290.7 +/- 44.4 vs. men 509.6 +/- 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time (r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 +/- 113.0 vs. 831.3 +/- 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 +/- 5.3 vs. men 14.5 +/- 4.9 ml.min(-1).100 ml(-1)). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 +/- 0.05 vs. men 0.11 +/- 0.04 ml.min(-1).100 ml(-1).mmHg(-1)). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex. 相似文献
18.
- 1. 1. This study examined the effect of inhaling air supersaturated with water on changes of core temperatures in submaximally exercising males.
- 2. 2. During exercise with inhalation of supersaturated relative to low-air-humidity air, a significant elevation in tympanic temperature (P = 0.009) and a significant decrease in esophageal temperature (P = 0.004) were observed.
- 3. 3. Forehead skin temperatures significantly decreased during humidified air inhalation (P = 0.02) supporting that this treatment induced greater thermolytic responses that cooled the skin.
- 4. 4. The results are consistent with the conclusion that heat loss from the upper airways directly influenced human cerebral temperatures as indexed by tympanic temperatures.
19.
Naoto Fujii Yasushi Honda Keiji Hayashi Hideaki Soya Narihiko Kondo Takeshi Nishiyasu 《Journal of applied physiology》2008,104(4):998-1005
We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (T(es)) in 19 healthy male subjects; in the exercise trial, T(es) was increased by prolonged submaximal cycling [50% peak O(2) uptake (Vo(2))] in the heat (35 degrees C). Minute ventilation (Ve), ventilatory equivalent for Vo(2) (Ve/Vo(2)) and CO(2) output (Ve/Vco(2)), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of T(es). In the exercise trial, Ve increased linearly with increases (from 37.0 to 38.7 degrees C) in T(es) in all subjects; in the rest trial, 14 of the 19 subjects showed a T(es) threshold for hyperpnea (37.8 +/- 0.5 degrees C). Above the threshold for hyperpnea, the slope of the regression line relating Ve and T(es) was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating Ve/Vo(2), Ve/Vco(2), and T(es) were significantly greater for the rest than the exercise trial. The increase in Ve reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating T(es) and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity. 相似文献
20.