首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In some African protected areas, concerns have arisen about the influence of locally high elephant numbers on other forms of biodiversity. In arid and semi-arid savannas, surface-water resources are scarce and agonistic interactions between elephants and other herbivores have been reported at waterholes, yet surprisingly very little is known about the impact of elephants on the use of waterholes by other herbivores. Here, we test whether when there are elephants at a waterhole, other herbivores (1) do not change their drinking behaviour; (2) spend shorter time around the water because they are disturbed by elephants’ presence and consequently have to leave the waterhole area probably without having met their water requirements, or (3) spend more time around the water probably owing to an increase in vigilance activities or because the presence of elephants may signal safety from predators. Results show that all species spend longer time around water when there are elephants at the waterhole, although the difference is not large. Consequently, this study strongly suggests that elephants do not prevent other herbivores from drinking (time at waterholes is not shortened when elephants are around). Further, if the additional time spent to drink is linked to an increased vigilance, the difference is not large, and hence unlikely to affect the population dynamics of other herbivores.  相似文献   

2.
Different species have different dispersal capabilities and in the field, species interact with each other within dynamic, heterogeneous and complex landscapes. While plants and certain herbivore species may disperse considerable distances by means of seed dispersal or flight, other herbivores (e.g. root‐feeding nematodes or non‐winged insect herbivores) are more limited in their dispersal capacities. This difference in dispersal capabilities results in mosaics of plant–herbivore interactions that shift over time and space leading to spatio‐temporal variation in both the presence and absence of the species and their interactions. We developed an individual based simulation model in which we examined how multi‐species interactions are affected by their mobility within structurally complex landscapes. The main objective was to address the consequences for the arms race between plant defence and herbivore resistance to changes in fundamental landscape and community attributes. We demonstrate that feedbacks between landscape structure, community structure and the specific dispersal rate of the species involved affect the evolutionary dynamics between plants and herbivore antagonists. While three‐species interactions result in increased plant defence and herbivore resistance, effects of dispersal have diverse effects depending on the prevailing landscape structure.  相似文献   

3.
In African savannas, surface water can become limiting and an understanding of how animals address the trade-offs between different constraints to access this resource is needed. Here, we describe water access by ten African herbivore species in Hwange National Park, Zimbabwe, and we explore four possible determinants of the observed behaviours: water abundance, thermoregulation, perceived predation risk and interference competition. On average, herbivores were observed to drink in 80% of visits to a waterhole. The probability of drinking was higher in 2003 (474 mm) than in 2004 (770 mm), and at the end of the dry season than at its beginning. For larger species, this probability may also be related to risks of interference competition with elephants or other herbivores. For smaller species, this probability may also be related to the perceived risk of predation. We also investigate the time spent accessing water to drink. The influence of herd size and the presence of young on the time spent accessing water for most species suggests that perceived predation risk plays a role. Thermoregulation also affects this time: during the hottest periods, herbivores spend less time in open areas, unless when wind is strong, probably owing to evapotranspired heat loss.  相似文献   

4.
We performed a common garden experiment using parental, F1, F2, and backcross willow hybrids to test the hypothesis that hybrid willows experience breakdown of resistance to herbivores. After exposing plants to herbivores in the field, we measured the densities/damage caused by 13 insect herbivores and one herbivorous mite. Using joint-scaling tests, we determined the contribution of additive, dominance, and epistasis to variation in susceptibility to herbivores (measured either as density or damage level) among the six genetic classes. We found the genetic architecture of susceptibility/resistance in the parental species to be complex, involving additive, dominance, and epistasis for each herbivore species. Although genic interactions altered plant susceptibility for each of the 14 herbivores, three distinct patterns of response of herbivores to hybrids were expressed. One pattern, observed in four herbivore species, supported the hypothesis of breakdown of resistance genes in recombinant hybrids. A second pattern, shown by six other herbivore species, supported the hypothesis of hybrid breakdown of host recognition genes. In other words, epistatic interactions for host recognition traits (probably oviposition/feeding stimulants or attractants) appeared to be important in determining herbivore abundance for those six species. The final patterns supported a structure of dominance, either for host recognition traits (in the case of three herbivore species) or for host resistance traits (for one herbivore species). The combination of differing responses of herbivore species, including members of the same genus and tribe, and the ubiquitous importance of epistasis suggests that many genes affect herbivore resistance in this hybrid willow system.  相似文献   

5.
The Nkuhlu large‐scale long‐term exclusion experiment in Kruger National Park was designed to study the long‐term effects of large herbivores on vegetation. One treatment excludes elephants, another excludes all herbivores larger than hares and another one comprises an open, control area. Vegetation monitoring was implemented in 2002 when a baseline survey was conducted prior to exclusion. Monitoring was repeated 5 years after exclusion. Data from the surveys were analysed to establish how structure and composition of woody vegetation had changed 5 years after herbivore exclusion. The analysis showed that neither plant assemblage nor mean vegetation height had changed significantly since exclusion. However, both species richness and density of woody plants increased 5 years after exclusion of all large herbivores, but not after the exclusion of elephants alone. One already common species, Dichrostachys cinerea, became more common after excluding all large herbivores compared with either no exclusion or elephant exclusion, possibly leading to competitive suppression of other species. Species other than D. cinerea tended to either increase or decrease in density, but the changes were insufficient to induce significant shifts in the overall assemblage of woody plants. The results indicate that after 5 years of exclusion, the combined assemblage of large herbivores, and not elephants alone, could induce changes in species richness and abundances of woody plants, but the effect was so far insufficient to induce measureable shifts in the assemblages of woody plants. It is possible that assemblages will change with time and increasing elephant numbers may amplify future changes.  相似文献   

6.
Plant herbivore interactions can be influenced by abiotic factors such as climate or resource availability. Nevertheless, the influence of climatic variation on the temporal dynamics of plant-herbivore networks has been scarcely studied. In this study we evaluated the influence of temperature and precipitation on the structure and selectiveness of plant-herbivore networks associated to a seasonal tropical ecosystem in the Gulf of Mexico. Although a significant turnover was observed in plant and herbivore species across seasons, high modularity and selectivity of the networks remained relatively constant despite the temporal variation in climatic variables. However, precipitation and temperature was negatively associated with niche overlap for herbivores and positively related to evenness of network interactions. In other words, less stressful conditions are likely to promote the diversification in the use of resources by herbivores, and increase evenness of interactions in the network. An increase in niche overlap and a decrease in the evenness of interactions during the driest and coldest months could be promoted by the presence of less specialized herbivores when availability and quality of host resources is lower.We suggest that the constancy in network selectiveness and modularity facilitates the coexistence of species through the fine distribution of niches and the equitable distribution of food resources in periods of greater precipitation and temperature, when the availability of host plants is greater. Overall, we show for the first time how abiotic factors can influence the emergent structural properties of an antagonistic tropical plant-herbivore network.  相似文献   

7.
Leaf miners typically show non-random distributions both between and within plants. We tested the hypothesis that leaf miners on two oak species were clumped on individual host trees and individual branches and addressed whether clumping was influenced by aspects of plant quality and how clumping and/or interactions with other oak herbivores affected leaf-miner survivorship. Null models were used to test whether oak herbivores and different herbivore guilds co-occur at the plant scale. Twenty individual Quercus geminata plants and 20 Quercus laevis plants were followed over the season for the appearance of leaf miners and other herbivores, and foliar nitrogen, tannin concentration, leaf toughness and leaf water content were evaluated monthly for each individual tree. The survivorship of the most common leaf miners was evaluated by following the fate of marked mines in several combinations that involved intra- and inter-specific associations. We observed that all leaf miners studied were clumped at the plant and branch scale, and the abundance of most leaf-miner species was influenced by plant quality traits. Mines that occurred singly on leaves exhibited significantly higher survivorship than double and triple mines and leaves that contained a mine or a leaf gall and a mine and damage by chewers exhibited lowest survivorship. Although leaf miners were clumped at individual host trees, null model analyses indicated that oak herbivores do not co-occur significantly less than expected by chance and there was no evidence for biological mechanisms such as inter-specific competition determining community structure at the plant scale. Thus, despite co-occurrence resulting in reduced survivorship at the leaf scale, such competition was not strong enough to structure separation of these oak herbivore communities.  相似文献   

8.
Manipulations of herbivores in protected areas may have profound effects on ecosystems. We examine short‐term effects on tree species assemblages and resource utilization by a mesoherbivore and small‐size herbivores (ungulates <20 kg) in Sand Forest, after browsing release from a megaherbivore (elephant), or both a mega‐ and mesoherbivore (nyala), respectively. Effects were experimentally separated using replicated exclosures where all trees were counted, identified to species and browsing events recorded. Tree species assemblages were impacted by both elephant and nyala, and by each herbivore species individually. Tree turnover rates were higher where both herbivore species were present than in their combined absence. Diet was segregated among elephant, nyala and small‐size herbivores. Both resource specificity and browsing pressure by nyala increased in absence of elephant; small‐size herbivores increased resource specificity in absence of elephant, and increased browsing pressure in absence of both elephant and nyala. This implies interference competition with competitive release. The indirect effect of the manipulation of herbivore populations, through the removal of one or two herbivore species, caused a shift in tree species composition and diet of smaller‐size herbivores. These indirect effects, especially on tree species composition, can become critical as they affect vegetation dynamics, biodiversity and ecosystem processes. Therefore, in order to conserve habitats and biodiversity across all trophic levels, conservation managers should consider the effects of: (1) the full herbivore assemblage present; and (2) any effects of altering the relative and absolute abundance of different herbivore species on other herbivore species and vegetation.  相似文献   

9.
Carbon-based secondary metabolites (CBSMs) such as tannins are assumed to function as plant defences against herbivores. CBSMs are thought to be inversely related to growth rate and nutrient concentrations because a physiological trade-off exists between cellular growth and differentiation, but CBSM concentrations can be altered by herbivory-induced changes in the trade-off. We predicted that a significant interaction exists between herbivory and growth phase, such that the effects of large herbivores (or their exclusion) on nutrient or CBSM concentrations are greatest during phases of rapid shoot or leaf growth. Leaf samples were collected during phases of different growth rate from six woody species 4 years after establishment of a large-scale long-term herbivore exclusion experiment in Kruger National Park, South Africa. Samples were analysed for N, P, condensed tannins and total phenolics. Interactions between growth phase and herbivores were rare. However, the assumption that elevated nutrients and reduced CBSMs occurs during fast phases of growth was supported by four species (consistent with the growth-differentiation balance hypothesis), but not the other two. Large herbivores generally did not affect nutrients, but CBSMs in four species were reduced by large herbivores other than elephants, while CBSMs in two species were reduced by elephants. Carbon limitation ultimately prevailed among woody plants taller than 2 m under long-term browsing. Large herbivores and plant growth phase are independent and important determinants of nutrients or CBSMs in African savannas, but the effects depend on the interacting assemblages of species, which poses challenges to the application of current general hypotheses of plant defence.  相似文献   

10.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

11.
We develop a multispecies plant-herbivore model to explore how plant competition for light and the selectivity of herbivores affect abundance patterns of plants and herbivores along productivity gradients. The model considers a small and a tall plant species, a generalist herbivore, and a selective herbivore. The selective herbivore feeds only on the small plant species. In the absence of the generalist herbivore, the tall plant species becomes increasingly dominant with increasing productivity, and the small plant and its selective herbivore disappear. The model shows that generalist herbivores can facilitate selective herbivores by suppressing competition for light. This favours the small plant species, and thereby the selective herbivores. The model predictions are qualitatively consistent with field studies of multispecies plant-herbivore systems.  相似文献   

12.
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.  相似文献   

13.
High-latitude plants are often more palatable to herbivores than low-latitude conspecifics. Does increased plant palatability lead to better herbivore performance? Our field and laboratory work investigated (A) whether high-latitude plants have traits indicating that they should be higher-quality foods for herbivores; (B) whether geographic differences in plant quality are more important than local adaptation of herbivores. We studied 3 plant species and 6 invertebrate herbivores in U.S. Atlantic Coast. Past studies had shown high-latitude individuals of these plants are more palatable than low-latitude conspecifics. We documented plant traits and herbivore performance (body size) in the field across latitude. We collected individuals from different latitudes for factorial (plant region x herbivore region) laboratory experiments, examining how herbivore performance was affected by plant region, herbivore region, and their interaction (i.e., local adaptation). Field surveys suggested high-latitude plants were likely of higher quality to herbivores. Leaf nitrogen content in all plant species increased toward high latitudes, consistent with lower leaf C/N and higher leaf chlorophyll content at high latitudes. Furthermore, leaf toughness decreased toward higher latitudes in 1 species. The body size of 4 herbivore species increased with latitude, consistent with high-latitude leaves being of higher quality, while 2 grasshopper species showed the opposite pattern, likely due to life-history constraints. In the laboratory, high-latitude plants supported better performance in 4 herbivore species (marginal in the 5th). The geographic region where herbivores were collected affected herbivore performance in all 6 species; however, the pattern was mixed, indicating a lack of local adaptation by herbivores to plants from their own geographic region. Our results suggest that more-palatable plants at high latitudes support better herbivore growth. Given that geographic origin of either plants or herbivores can affect herbivore performance, the nature of plant-herbivore interactions is likely to change if climate change “reshuffles” plant and herbivore populations across latitude.  相似文献   

14.
I address the selection of plants with different characteristics by herbivores of different body sizes by incorporating allometric relationships for herbivore foraging into optimal foraging models developed for herbivores. Herbivores may use two criteria in maximizing their nutritional intake when confronted with a range of food resources: a minimum digestibility and a minimum cropping rate. Minimum digestibility should depend on plant chemical characteristics and minimum cropping rate should depend on the density of plant items and their size (mass). If herbivores do select for these plant characteristics, then herbivores of different body sizes should select different ranges of these characteristics due to allometric relationships in digestive physiology, cropping ability and nutritional demands. This selectivity follows a regular pattern such that a herbivore of each body size can exclusively utilize some plants, while it must share other plants with herbivores of other body sizes. I empirically test this hypothesis of herbivore diet selectivity and the pattern of resource use that it produces in the field and experimentally. The findings have important implications for competition among herbivores and their population and community ecology. Furthermore, the results may have general applicability to other types of foragers, with general implications for how biodiversity is influenced.  相似文献   

15.
Competition between herbivorous insects often occurs as a trait mediated indirect effect mediated by inducible changes in plant quality rather than a direct effect mediated by plant biomass. While plant-mediated competition likely influences many herbivores, progress linking studies of plant-mediated competition in terrestrial phytophagous insects to longer-term consequences for herbivore communities has been elusive, and there is little relevant theory to guide this effort. We present simple models describing plant-mediated interactions between two herbivorous insects or other functionally equivalent organisms. These models consider general features of plant-mediated competition including specificity of elicitation by and effects on herbivores, positive and negative interactions among herbivores, competition independent of changes in plant biomass, and the existence of multiple relevant plant traits. Our analyses generate four important conclusions. First, herbivores competing strongly via only one plant quality phenotype exhibit a limited range of outcomes. These include coexistence and competitive exclusion of either herbivore, but do not include initial condition dependence. Second, when the outcome of competition is competitive exclusion, the herbivore that persists is the one that can do so under the highest inducible reductions in plant quality. Third, competition via more than one inducible phenotype can exhibit a wider range of outcomes including multiple equilibria and initial condition dependence. Finally, transient dynamics may not predict the eventual outcome of competition when changes in plant quality are slow relative to herbivore population growth, especially when herbivores compete through multiple phenotypes. We interpret our results in terms of competition outcomes reported in the literature, and suggest directions for the future empirical study of herbivore competition mediated by inducible changes in plant quality.  相似文献   

16.
The ongoing loss of large trees and densification of shrubs are two prevalent processes that take place in African savannas, with profound consequences for their structure and function. We evaluated herbivore impacts on savanna woody communities using a long-term exclosure experiment in the Kruger National Park, South Africa, with three treatments: the exclusion of large mammals only (i.e. elephant and giraffe), exclusion of all herbivores larger than a hare, and areas open to all herbivores. We asked three questions: (1) How did variable exclusion of herbivores affect woody density and structure across the catena (i.e. riparian, sodic and crest vegetation)? (2) Did the exclusion of herbivores result in unique woody species composition? (3) Did herbivore exclusion result in a higher proportion of palatable species? After 17 years, we found that herbivores mainly affected the heights and densities of existing species, rather than leading to turnover of woody species assemblages. Although densities of individuals increased in the full exclosure (350 ha−1), the change was more moderate than expected. By contrast, mixed mega-and meso-herbivores decreased the number of trees and shrubs (decreases of 780 ha−1) via a variety of physical impacts. Meso-herbivores alone, on the other hand, had less impact on individual density (i.e. no change), but limited average height growth and canopy dimensions in certain habitat types. Where elephants are present, they are effective at reducing the density of woody stems to the point of counteracting woody encroachment, but at the same time are actively preventing the persistence of large trees (>5 m) as well as preventing trees from recruiting to larger size classes. However, the lack of massive recruitment and woody cover increases with elephant exclusion, especially for more preferred species, suggests that factors beyond elephants, such as dispersal limitation, seed predation, and drought, are also acting upon species.  相似文献   

17.
In forests, local site conditions can affect both trees and herbivores and hence site-related factors act indirectly on herbivores mediated by tree growth rates. Here, tree foliage represents a fundamental prerequisite for insect herbivore development providing energy in the form of plant tissue quality. Resource-based theories, on the other hand, assume that the synthesis of defensive compounds is a trade-off with growth and peaks at low resource availability. However, the extent to which plant tissue quality in response to site productivity is relevant in the species-energy relationship is unknown. Therefore, we aimed at a better understanding of the form and structure of the species-energy relationship in forest insects. We used census data of foliage-feeding insects along a productivity gradient of Scots pine forests defined by relative growth rates of trees (RGR). As a result, diversity monotonically increases with decreasing RGR (as a proxy for energy) during almost two decades of sampling. Herbivore assemblages become more similar with available energy as species turnover linearly decreases and proportions of sites occupied by individual species rise. The results suggest that tree growth rate influences herbivore dynamics in this system by altering the chemical composition of needles, without necessarily affecting the form in the relationship. The site-specific resource availability requires trees to adjust their allocation to synthesis of carbon-based secondary metabolites or growth, which then results in fundamental differences in herbivore dynamics at low vs. lowest RGR (regular cycles (dominance) vs. dampened cycles (evenness)). However, these differences inevitably demonstrate that species richness is not necessarily a result of more individuals and implicate that different mechanisms are involved (facilitation vs. competition/temporal heterogeneity). The resulting pattern and structure of foliage-feeding insects advance our understanding of herbivore dynamics in response to site quality and tree growth, which may ultimately improve our knowledge of plant-insect interactions in the face of environmental change.  相似文献   

18.
The importance of herbivore–plant and soil biota–plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta‐analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root‐feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores, whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, and the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked.  相似文献   

19.
Mooney KA  Pratt RT  Singer MS 《PloS one》2012,7(4):e34403
Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号