首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystalline inorganic pyrophosphatase isolated from baker's yeast   总被引:21,自引:0,他引:21  
Crystalline inorganic pyrophosphatase has been isolated from baker's yeast. The crystalline enzyme is a protein of the albumin type with an isoelectric point near pH 4.8. Its molecular weight is of the order of 100,000. It contains about 5 per cent tyrosine and 3.5 per cent tryptophane. It is most stable at pH 6.8. The new crystalline protein acts as a specific catalyst for the hydrolysis of inorganic pyrophosphate into orthophosphate ions. It does not catalyze the hydrolysis of the pyrophosphate radical of such organic esters as adenosine di- and triphosphate, or thiamine pyrophosphate. Crystalline pyrophosphatase requires the presence of Mg, Co, or Mn ions as activators. These ions are antagonized by calcium ions. Mg is also antagonized by Co or Mn ions. The rate of the enzymatic hydrolysis of inorganic pyrophosphate is proportional to the concentration of enzyme and is a function of pH, temperature, concentration of substrate, and concentration of activating ion. The approximate conditions for optimum rate are: 40 degrees C. and pH 7.0 at a concentration of 3 to 4 x 10(-3)M Na(4)P(2)O(7) and an equivalent concentration of magnesium salt. The enzymatic hydrolysis of Na(4)P(2)O(7) or K(4)P(2)O(7) proceeds to completion and is irreversible under the conditions at which hydrolysis is occurring. Details are given of the method of isolation of the crystalline enzyme.  相似文献   

2.
A comparative study of phosphorylation of native dimeric and artificial monomeric forms of inorganic pyrophosphatase and its fluoride-stabilized complex with PPi has been carried out. The maximal incorporation of Pi for the dimeric and monomeric proteins is 0.5 and 1 mole per mole of subunit, respectively. The saturation kinetic curves are suggestive of strong positive cooperative interactions. The value of the Hill coefficient (5.5) for the free dimeric enzyme drastically changes upon the active center blockage and/or transition to the monomeric enzyme. Acceleration of dephosphorylation induced by Pi in the presence of Mg2+ is observed only in the case of the dimeric protein. The data obtained indicate that phosphorylation of native dimeric pyrophosphatase occurs according to a "flip-flop" mechanism; the Pi binding in the active center exerts a strong influence on individual steps of the reaction.  相似文献   

3.
4.
The interaction of uranyl ions with inorganic pyrophosphatase from baker's yeast was investigated by measurement of their effect on the protein fluorescence. Fluorescence titrations of the native enzyme with uranyl nitrate show that there is a specific binding of uranyl ions to the enzyme. It was deduced that each subunit of the enzyme binds one uranyl ion. The binding constant was estimated to be in the order of 10(7) M-1. The enzyme which contains a small number of chemically modified carboxyl groups was not able to bind uranyl ions specifically. The modification of carboxyl groups was carried out by use of a water soluble carbodiimide and the nucleophilic reagent N-(2,4-dinitro-phenyl)-hexamethylenediamine. The substrate analogue calcium pyrophosphate displaced the uranyl ions from their binding sites at the enzyme. From the results it is concluded that carboxyl groups of the active site are the ligands for the binding of uranyl ions.  相似文献   

5.
6.
7.
The interaction of magnesium ions with inorganic pyrophosphatase from baker's yeast was studied by means of heat denaturation. The heat inactivation of this enzyme is a biphasic process. The velocities in the initial range and in the subsequent slower part of inactivation are diminished with rising Mg2+ concentration in the inactivation assay. A model is proposed which describes this behavior. It is assumed that two enzyme conformations exist in equilibrium whose conversion rates correspond to the inactivation rate in its order of magnitude. The equilibrium is shifted by Mg2+. The two enzyme species differ in their Mg2+ binding behavior as evidenced by differences in the half-saturation constants and the cooperativity of the binding. The same conclusions are drawn from the fluorimetric measurement of denaturation of inorganic pyrophosphatase. Besides, an additional Mg2+ binding site is demonstrable, the saturation of which obviously leads to stabilisation of part of the enzyme structure without protecting it against loss of enzymatic activity. With the same method the labilizing effect of Zn2+ on the structure of the inorganic pyrophosphatase from baker's yeast was studied.  相似文献   

8.
Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase   总被引:1,自引:0,他引:1  
P1,P2-Bidentate Co(NH3)4PP was found to be a competitive inhibitor of pyrophosphatase vs. MgPP (Kis = 8.7 mM, pH 7) and, in the presence of Mg2+, an active substrate as well. P1,P2-Bidentate Cr(III) complexes of pyrophosphate, imidodiphosphate, and methylenediphosphonate were also competitive inhibitors vs. MgPP (pH 5.9; Kis = 0.2, 0.2, and 0.4 mM, respectively). In the presence of Mg2+, P1,P2-bidentate Cr(H2O)4PP was found to have a Km 10-fold greater and a turnover number 36-fold smaller than MgPP at pH 5.9. Mg2+, Mn2+, Co2+, Zn2+, Cd2+, Ni2+, and Fe2+ activate the CrPP--pyrophosphatase reaction, while Ca2+ and Ba2+ are not activators but serve as competitive inhibitors vs. Mg2+ (Kis = 0.35 and 2.3 mM). At levels above 0.1 mM, Mn2+, Co2+, and Zn2+ show activator inhibition. Kinetic studies with CrPP and Mg2+ suggest that the kinetic mechanism is rapid equilibrium ordered, with CrPP adding before Mg2+. pH studies of the MgPP/Mg2+ reaction and the CrPP/Mg2+ reaction suggest that the active form of the substrate is (MgPP)2- and that the uncomplexed metal ion cofactor interacts with at least two active-site residues, one possibly via H bonding and the other by direct coordination. The former group (pKa = 5.6) appears on the basis of temperature and solvent perturbation studies to be a carboxylic acid. The MgPP reaction also requires that an active-site residue (pKa = 7.5) be protonated. Temperature and solvent perturbation studies suggest that this residue is an amine. A mechanism accounting for these observations is presented.  相似文献   

9.
Kinetic measurements were performed to test the effect of uranyl ions on the enzymatic hydrolysis of pyrophosphate. A strong inhibition of the enzyme was found. From a Dixon-plot an inhibition competitive to the substrate magnesium pyrophosphate and an inhibitory constant of Ki = 3 . 10(-7) M was deduced.  相似文献   

10.
A soluble inorganic pyrophosphatase from photolithoautotrophically grown Rhodopseudomonas palustris was purified to a state of apparent homogeneity applying high resolving liquid chromatography steps. Values of 65 500 and 64 500 were calculated for the relative molecular mass under non-dissociating conditions employing gel filtration and high-performance liquid chromatography, respectively. Dissociation sodium dodecyl sulfate gel electrophoresis resulted in a value of 32 000, indicating that the enzyme is composed of two subunits of equal molecular mass. Isoelectric focusing revealed a pI value of 4.7. The purified enzyme was specific for PPi and the activity was modified by divalent cations. Ca2+, Mn2+, Mg2+ and Co2+ were potent activators at a concentration ratio of [Me2+]/[PPi] less than 1. Ca2+ turned out to be the most potent activator. Free Me2+ was inhibitory on the PPiase activity. The (Me-PPi) complex is regarded as the functional substrate. Km and Ki values of the metal activation and inhibition were determined. An activation energy of Ea = 14.4 kJ/mol was derived from Arrhenius plots for the enzymatic reaction.  相似文献   

11.
12.
13.
14.
1. A method is described for the isolation of hexokinase from baker''s yeast. The method is based mainly on fractionation with alcohol and results See PDF for Structure in a 30-fold increase in specific activity. The final product could be crystallized from ammonium sulfate without change in specific activity. 2. The enzyme catalyzes a transfer of phosphate from adenosinetriphosphate to glucose, fructose, or mannose, the relative rates with these three sugars being 1:1.4:0.3. 3. With glucose as substrate, the turnover number for the crystalline enzyme is 13,000 moles of substrate per 105 gm. of protein per minute at 30° and pH 7.5. The temperature coefficient (Q 10°) between 0 and 30° is 1.9. 4. Magnesium ions are necessary for the activity, the dissociation constant for the Mg++ -protein complex being 2.6 x 10–3. Fluoride in concentrations as high as 0.125 M has no inhibitory effect on the enzyme when the Mg++ and orthophosphate concentrations are 6.5 x 10–3 M and 1 x 10–3 M, respectively. 5. The crystalline enzyme shows a loss in activity when highly diluted. This loss in activity can be prevented by diluting in the presence of small amounts of other proteins. Of the various protective proteins tested, insulin was the most effective, providing complete protection in a concentration of 6 micrograms per cc.; with serum albumin, a concentration of 60 micrograms per cc. was necessary. Thiol compounds (cysteine, glutathione) exerted no protective action. 6. The inactivation of the crystalline enzyme on incubation with trypsin can be prevented to a marked degree by the presence of glucose. The instability of crude preparations of yeast hexokinase may be attributed to the presence of proteolytic enzymes, since glucose or fructose has a remarkable protective effect on such preparations.  相似文献   

15.
The denaturation characteristics of inorganic pyrophosphatase from baker's yeast and the interaction with Cu2+ were investigated with fluorimetric methods. The position of the fluorescence emission spectrum with a maximum at 328 nm together with a quantum yield of 0.12 led to the conclusion that most of the tryptophan residues of the protein are buried in nonpolar inner regions of the molecule. The contribution of the tyrosine residues to the fluorescence of pyrophosphatase is only about 7%. Denaturation of the protein with denaturants or changes of the pH value cause a red shift of the fluorescence emission maximum. In the presence of Cu2+ ions a fluorescence quenching is observed. Thereby, a specific binding of one Cu2+ per subunit may be distinguished from further unspecific Cu2+ binding. The Cu2+ binding to the latter sites shows a time dependence according to a slow, reversible exposure of additional binding sites. This time dependent binding characteristics was also verified by following the free Cu2+ concentration with the fluorescent "metal indicator" epsilon-ADP.  相似文献   

16.
A kinetic study of inorganic pyrophosphatase isolated from brewer's yeast was done. It was shown that all three isoenzymes have the same pH-optimum and specificity with respect to substrate and metal activator. Statistical treatment of the kinetic data yielded equilibrium and catalytical constants, describing enzyme interaction with the metal activator and substrate. The catalytic properties of all three isoenzymes are similar to those of the baker's yeast pyrophosphatase. The fluoride inhibition pattern for inorganic pyrophosphatase from brewer's yeast is similar to that for the baker's yeast enzyme.  相似文献   

17.
Carboxamidomethylation of yeast inorganic pyrophosphatase   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号